Pre- and postsynaptic maturation of the neuromuscular junction during neonatal synapse elimination depends on protein kinase C. 2002

Maria A Lanuza, and Neus Garcia, and Manel Santafé, and Carmen M González, and Immaculada Alonso, and Phillip G Nelson, and Josep Tomàs
Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain. male@fmcs.urv.es

The distribution of acetylcholine receptors (AChRs) within and around the neuromuscular junction changes dramatically during the first postnatal weeks, a period during which polyneuronal innervation is eliminated. We reported previously that protein kinase C (PKC) activation accelerates postnatal synapse loss. Because of the close relationship between axonal retraction and AChR cluster dispersal, we hypothesize that PKC can modulate morphological maturation changes of the AChR clusters in the postsynaptic membrane during neonatal axonal reduction. We applied substances affecting PKC activity to the neonatal rat levator auris longus muscle in vivo. Muscles were then stained immunohistochemically to detect both AChRs and axons. We found that, during the first postnatal days of normal development, substantial axonal loss preceded the formation of areas in synaptic sites that were free of AChRs, implying that axonal loss could occur independently of changes in AChR cluster organization. Nevertheless, there was a close relationship between axonal loss and AChR organization; PKC modulates both, although differently. Block of PKC activity with calphostin C prevented both AChR loss and axonal loss between postnatal days 4 and 6. PKC may act primarily to influence AChR clusters and not axons, insofar as phorbol ester activation of PKC accelerated changes in receptor aggregates but produced relatively little axon loss.

UI MeSH Term Description Entries
D008297 Male Males
D009281 Naphthalenes Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Maria A Lanuza, and Neus Garcia, and Manel Santafé, and Carmen M González, and Immaculada Alonso, and Phillip G Nelson, and Josep Tomàs
June 1985, Cellular and molecular neurobiology,
Maria A Lanuza, and Neus Garcia, and Manel Santafé, and Carmen M González, and Immaculada Alonso, and Phillip G Nelson, and Josep Tomàs
January 2003, Neuroscience,
Maria A Lanuza, and Neus Garcia, and Manel Santafé, and Carmen M González, and Immaculada Alonso, and Phillip G Nelson, and Josep Tomàs
August 2020, Neural development,
Maria A Lanuza, and Neus Garcia, and Manel Santafé, and Carmen M González, and Immaculada Alonso, and Phillip G Nelson, and Josep Tomàs
June 2011, Nature neuroscience,
Maria A Lanuza, and Neus Garcia, and Manel Santafé, and Carmen M González, and Immaculada Alonso, and Phillip G Nelson, and Josep Tomàs
June 2017, Human molecular genetics,
Maria A Lanuza, and Neus Garcia, and Manel Santafé, and Carmen M González, and Immaculada Alonso, and Phillip G Nelson, and Josep Tomàs
July 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Maria A Lanuza, and Neus Garcia, and Manel Santafé, and Carmen M González, and Immaculada Alonso, and Phillip G Nelson, and Josep Tomàs
August 2010, Muscle & nerve,
Maria A Lanuza, and Neus Garcia, and Manel Santafé, and Carmen M González, and Immaculada Alonso, and Phillip G Nelson, and Josep Tomàs
October 2003, Science's STKE : signal transduction knowledge environment,
Maria A Lanuza, and Neus Garcia, and Manel Santafé, and Carmen M González, and Immaculada Alonso, and Phillip G Nelson, and Josep Tomàs
January 1985, Pharmacology,
Maria A Lanuza, and Neus Garcia, and Manel Santafé, and Carmen M González, and Immaculada Alonso, and Phillip G Nelson, and Josep Tomàs
August 2016, Brain, behavior, and immunity,
Copied contents to your clipboard!