Morphology and physiology of Spirochaeta aurantia strains isolated from aquatic habitats. 1975

J A Breznak, and E Canale-Parola

1. Seven strains of Spirochaeta aurantia were isolated from pond and swamp water by means of a selective technique which utilized the ability of these organisms to move through bacterial filters and to diffuse through agar media. Although most of the isolations were accomplished when enrichment media low in carbohydrates were used, all seven strains were found to be exclusively saccharolytic. 2. The isolates could be divided into two groups on the basis of cell morphology: a loosely coiled group, and a tightly coiled group with markedly smaller wave length and wave apmlitude. Spirochetes of the latter group possessed a slightly lower GC content in their DNA. The isolates were facultative anaerobes, synthesized carotenoid pigments which conferred an orange color to aerobic colonies, and utilized a variety of carbohydrates--but not amino acids--as energy sources. Exogenous thiamine was required by six isolates tested, riboflavin by four, and biotin by one. The major products of glucose fermentation were acetate, ethanol, CO2 and H2. Growth of the isolates was inhibited by a variety of antibiotics. Determinations of GC contents of DNA showed that strains of S. aurantia are phylogenetically distant from spirochetes classified in the genera Treponema and Leptospira. 3. S. aurantia populations inoculated in the center of agar medium plates migrated in the form of growth rings toward the periphery of the plates. The rate of migration of glucose-utilizing rings was greatest at low glucose concentrations (e.g., 0.02 g/100 ml). It was concluded that migration of cells present in these rings was mainly due to a chemotactic response to glucose which served both as the attractant and the substrate. Chemotaxis of S. aurantia toward glucose may be used as a selective factor in isolating this bacterium from natural environments. 4. The subspecific epithet stricta is proposed to recognize, taxonomically, the tightly coiled strains of S. aurantia.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D003597 Cytosine Nucleotides A group of pyrimidine NUCLEOTIDES which contain CYTOSINE. Cytidine Phosphates,Nucleotides, Cytosine,Phosphates, Cytidine
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine

Related Publications

J A Breznak, and E Canale-Parola
April 1977, Journal of bacteriology,
J A Breznak, and E Canale-Parola
January 1989, Journal of bacteriology,
J A Breznak, and E Canale-Parola
March 2015, Systematic and applied microbiology,
J A Breznak, and E Canale-Parola
January 2007, Mycologia,
J A Breznak, and E Canale-Parola
December 2009, Glycoconjugate journal,
J A Breznak, and E Canale-Parola
September 1983, Journal of bacteriology,
J A Breznak, and E Canale-Parola
April 2000, Journal of bacteriology,
J A Breznak, and E Canale-Parola
September 1988, Journal of bacteriology,
J A Breznak, and E Canale-Parola
February 1983, Journal of bacteriology,
J A Breznak, and E Canale-Parola
February 1993, FEMS microbiology letters,
Copied contents to your clipboard!