A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. 2002

Mikhail Bogdanov, and Phillip N Heacock, and William Dowhan
Department of Biochemistry and Molecular Biology, Medical School, University of Texas-Houston, Houston, TX 77225, USA.

To address the role of phospholipids in the topological organization of polytopic membrane proteins, the function and assembly of lactose permease (LacY) was studied in mutants of Escherichia coli lacking phosphatidylethanolamine (PE). PE is required for the proper conformation and active transport function of LacY. The N-terminal half of LacY assembled in PE-lacking cells adopts an inverted topology in which normally non-translocated domains are translocated and vice versa. Post-assembly synthesis of PE triggers a conformational change, resulting in a lipid-dependent recovery of normal conformation and topology of at least one LacY subdomain accompanied by restoration of active transport. These results demonstrate that membrane protein topology once attained can be changed in a reversible manner in response to alterations in phospholipid composition, and may be subject to post-assembly proofreading to correct misfolded structures.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein
D026901 Membrane Transport Proteins Membrane proteins whose primary function is to facilitate the transport of molecules across a biological membrane. Included in this broad category are proteins involved in active transport (BIOLOGICAL TRANSPORT, ACTIVE), facilitated transport and ION CHANNELS. Biological Pump,Membrane Transport Protein,Membrane Transporter,Membrane Transporters,Metabolic Pump,Permease,Biological Pumps,Metabolic Pumps,Permeases,Pump, Biologic,Pump, Biological,Pump, Metabolic,Pumps, Biological,Pumps, Metabolic,Biologic Pump,Protein, Membrane Transport,Transport Protein, Membrane,Transport Proteins, Membrane,Transporter, Membrane,Transporters, Membrane
D027981 Symporters Membrane transporters that co-transport two or more dissimilar molecules in the same direction across a membrane. Usually the transport of one ion or molecule is against its electrochemical gradient and is "powered" by the movement of another ion or molecule with its electrochemical gradient. Co-Transporter,Co-Transporters,Symporter,Co Transporter,Co Transporters
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

Mikhail Bogdanov, and Phillip N Heacock, and William Dowhan
November 2002, The EMBO journal,
Mikhail Bogdanov, and Phillip N Heacock, and William Dowhan
December 2003, The Journal of biological chemistry,
Mikhail Bogdanov, and Phillip N Heacock, and William Dowhan
November 2012, The Journal of biological chemistry,
Mikhail Bogdanov, and Phillip N Heacock, and William Dowhan
July 1998, The Journal of biological chemistry,
Mikhail Bogdanov, and Phillip N Heacock, and William Dowhan
October 1989, Nature,
Mikhail Bogdanov, and Phillip N Heacock, and William Dowhan
December 2019, The Journal of biological chemistry,
Mikhail Bogdanov, and Phillip N Heacock, and William Dowhan
September 1990, Cell,
Mikhail Bogdanov, and Phillip N Heacock, and William Dowhan
May 1996, The Journal of biological chemistry,
Mikhail Bogdanov, and Phillip N Heacock, and William Dowhan
November 1995, Biochemical Society transactions,
Copied contents to your clipboard!