Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. 2003

Wei Zhang, and Mikhail Bogdanov, and Jing Pi, and A James Pittard, and William Dowhan
Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030, USA.

Once inserted, transmembrane segments of polytopic membrane proteins are generally considered stably oriented due to the large free energy barrier to topological reorientation of adjacent extramembrane domains. However, the topology and function of the polytopic membrane protein lactose permease of Escherichia coli are dependent on the membrane phospholipid composition, revealing topological dynamics of transmembrane domains after stable membrane insertion (Bogdanov, M., Heacock, P. N., and Dowhan, W. (2002) EMBO J. 21, 2107-2116). In this study, we show that the high affinity phenylalanine permease PheP shares many similarities with lactose permease. PheP assembled in a mutant of E. coli lacking phosphatidylethanolamine (PE) exhibited significantly reduced active transport function and a complete inversion in topological orientation of the N terminus and adjoining transmembrane hairpin loop compared with PheP in a PE-containing strain. Introduction of PE following the assembly of PheP triggered a reorientation of the N terminus and adjacent hairpin to their native orientation associated with regain of wild-type transport function. The reversible orientation of these secondary transport proteins in response to a change in phospholipid composition might be a result of inherent conformational flexibility necessary for transport function or during protein assembly.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine

Related Publications

Wei Zhang, and Mikhail Bogdanov, and Jing Pi, and A James Pittard, and William Dowhan
November 2002, The EMBO journal,
Wei Zhang, and Mikhail Bogdanov, and Jing Pi, and A James Pittard, and William Dowhan
January 2010, Methods in molecular biology (Clifton, N.J.),
Wei Zhang, and Mikhail Bogdanov, and Jing Pi, and A James Pittard, and William Dowhan
May 2002, The EMBO journal,
Wei Zhang, and Mikhail Bogdanov, and Jing Pi, and A James Pittard, and William Dowhan
September 2012, Journal of the American Chemical Society,
Wei Zhang, and Mikhail Bogdanov, and Jing Pi, and A James Pittard, and William Dowhan
November 2015, Proceedings of the National Academy of Sciences of the United States of America,
Wei Zhang, and Mikhail Bogdanov, and Jing Pi, and A James Pittard, and William Dowhan
September 1998, The EMBO journal,
Wei Zhang, and Mikhail Bogdanov, and Jing Pi, and A James Pittard, and William Dowhan
December 2010, Journal of biological rhythms,
Wei Zhang, and Mikhail Bogdanov, and Jing Pi, and A James Pittard, and William Dowhan
November 1995, Biochemical Society transactions,
Wei Zhang, and Mikhail Bogdanov, and Jing Pi, and A James Pittard, and William Dowhan
June 1989, Proceedings of the National Academy of Sciences of the United States of America,
Wei Zhang, and Mikhail Bogdanov, and Jing Pi, and A James Pittard, and William Dowhan
March 2010, Journal of molecular biology,
Copied contents to your clipboard!