Regulation of branched-chain amino acid oxidation in isolated muscles, nerves and aortas of rats. 1975

M G Buse, and S Jursinic, and S S Reid

1. The oxidation of the three branched-chain amino acids was regulated in parallel fashion in rat tissues studied in vitro. 2. With 0.1 mM-[1-14C]isoleucine as substrate in the presence of 5.5 mM-glucose, 14CO2 production was 0.6 mumol/2 h per g in the aorta, 0.3 in peripheral nerve, 0.2 in muscle and 0.13 in spinal cord. 3. The ratio 14C oxidized/14C incorporated into proteins with 0.1 mM-[1-14C]leucine was 1.3 in hemidiaphragms, 3.3 in sciatic nerve and 1.0 in nerves undergoing Wallerian degeneration. Leucine oxidation decreased only slightly during degeneration, but protein synthesis doubled. 4. Hemidiaphragms incubated with [1-14C]leucine or 4-methyl-2-oxo[1-14C]pentanoate increased 14CO2 production 7-9-fold as substrate concentration was increased from 0.1 to 0.5 mM; under the same conditions 14CO2 production by nerves increased only 2-3-fold. 5. 2-Oxoglutarate stimulated the oxidation of the branched-chain amino acids by muscles and peripheral nerves and the oxidation of 4-methyl-2-oxopentanoate by hemidiaphragms but not by nerves. 6. Octanoate (0.1-1.0 mM) markedly stimulated the oxidation of branched-chain amino acids and of 4-methyl-2-oxopentanoate in hemidiaphragms, but inhibited oxidation of both by peripheral nerves and spinal cord. In aortas, oxidation of isoleucine (the only substance tested) was inhibited by octanoate. 7. The effects of octanoate and 2-oxoglutarate on leucine oxidation by hemidiaphragms were additive at low concentrations. When maximally stimulating concentrations of either agent were used, addition of the other was ineffective. 8. Pyruvate inhibited the oxidation of branched-chain amino acids and 4-methyl-2-oxopentanoate in all tissues tested. 9. Insulin did not affect the oxidation of 4-methyl-2-oxopentanoate by muscles or nerves. 10. The oxidative decarboxylation of the branched-chain alpha-oxo acids is suggested as a regulatory site of branched-chain amino acid oxidation. Differences in regulation between muscle on the one hand, and nerve and aorta on the other, are discussed.

UI MeSH Term Description Entries
D007656 Ketoglutaric Acids A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442) Oxoglutarates,2-Ketoglutarate,2-Ketoglutaric Acid,2-Oxoglutarate,2-Oxoglutaric Acid,Calcium Ketoglutarate,Calcium alpha-Ketoglutarate,Ketoglutaric Acid,Oxogluric Acid,alpha-Ketoglutarate,alpha-Ketoglutaric Acid,alpha-Ketoglutaric Acid, Calcium Salt (2:1),alpha-Ketoglutaric Acid, Diammonium Salt,alpha-Ketoglutaric Acid, Dipotassium Salt,alpha-Ketoglutaric Acid, Disodium Salt,alpha-Ketoglutaric Acid, Monopotassium Salt,alpha-Ketoglutaric Acid, Monosodium Salt,alpha-Ketoglutaric Acid, Potassium Salt,alpha-Ketoglutaric Acid, Sodium Salt,alpha-Oxoglutarate,2 Ketoglutarate,2 Ketoglutaric Acid,2 Oxoglutarate,2 Oxoglutaric Acid,Calcium alpha Ketoglutarate,alpha Ketoglutarate,alpha Ketoglutaric Acid,alpha Ketoglutaric Acid, Diammonium Salt,alpha Ketoglutaric Acid, Dipotassium Salt,alpha Ketoglutaric Acid, Disodium Salt,alpha Ketoglutaric Acid, Monopotassium Salt,alpha Ketoglutaric Acid, Monosodium Salt,alpha Ketoglutaric Acid, Potassium Salt,alpha Ketoglutaric Acid, Sodium Salt,alpha Oxoglutarate,alpha-Ketoglutarate, Calcium
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009417 Nerve Tissue Differentiated tissue of the central nervous system composed of NERVE CELLS, fibers, DENDRITES, and specialized supporting cells. Nervous Tissue,Nerve Tissues,Nervous Tissues,Tissue, Nerve,Tissue, Nervous,Tissues, Nerve,Tissues, Nervous
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D002210 Caprylates Derivatives of caprylic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a carboxy terminated eight carbon aliphatic structure. Caprylate,Octanoates,Caprylic Acids,Octanoic Acids,Acids, Caprylic,Acids, Octanoic
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms

Related Publications

M G Buse, and S Jursinic, and S S Reid
July 1976, Biochimica et biophysica acta,
M G Buse, and S Jursinic, and S S Reid
December 1986, Biochemical Society transactions,
M G Buse, and S Jursinic, and S S Reid
January 1976, Acta microbiologica Academiae Scientiarum Hungaricae,
M G Buse, and S Jursinic, and S S Reid
August 1994, The Journal of nutrition,
M G Buse, and S Jursinic, and S S Reid
December 2004, Hepatology research : the official journal of the Japan Society of Hepatology,
M G Buse, and S Jursinic, and S S Reid
May 1992, Scandinavian journal of gastroenterology,
M G Buse, and S Jursinic, and S S Reid
December 1989, Biochemical Society transactions,
M G Buse, and S Jursinic, and S S Reid
January 1992, Diabete & metabolisme,
M G Buse, and S Jursinic, and S S Reid
December 2022, Nature metabolism,
M G Buse, and S Jursinic, and S S Reid
June 1990, Medicine and science in sports and exercise,
Copied contents to your clipboard!