The actions of volatile anaesthetics on synaptic transmission in the dentate gyrus. 1975

C D Richards, and A E White

1. The action of four volatile anaesthetics on the evoked synaptic potentials of in vitro preparations of the hippocampus were examined. 2. All four anaesthetics (ether, halothane, methoxyflurane and trichloroethylene) depressed the synaptic transmission between the perforant path and the granule cells at concentrations lower than those required to maintain anaesthesia in intact animals. 3. The population excitatory post-synaptic potential (e.p.s.p.) and massed discharge of the cortical cells (population spike) were depressed at concentrations of the anaesthetics lower than those required to depress the compound action potential of the perforant path nerve fibres. None of the anaesthetics studied increased the threshold depolarization required for granule cell discharge. Furthermore, frequency potentiation of the evoked cortical e.p.s.p.s was not impaired by any of the anaesthetics studied. 4. It is concluded that all four anaesthetics depress synaptic transmission in the dentate gyrus either by reducing the amount of transmitter released from each nerve terminal in response to an afferent volley, or by decreasing the sensitivity of the post-synaptic membrane to released transmitted or by both effects together.

UI MeSH Term Description Entries
D008733 Methoxyflurane An inhalation anesthetic. Currently, methoxyflurane is rarely used for surgical, obstetric, or dental anesthesia. If so employed, it should be administered with NITROUS OXIDE to achieve a relatively light level of anesthesia, and a neuromuscular blocking agent given concurrently to obtain the desired degree of muscular relaxation. (From AMA Drug Evaluations Annual, 1994, p180) Methofluranum,Anecotan,Penthrane,Pentrane
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004986 Ether A mobile, very volatile, highly flammable liquid used as an inhalation anesthetic and as a solvent for waxes, fats, oils, perfumes, alkaloids, and gums. It is mildly irritating to skin and mucous membranes. Diethyl Ether,Ether, Ethyl,Ethyl Ether,Ether, Diethyl
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000777 Anesthetics Agents capable of inducing a total or partial loss of sensation, especially tactile sensation and pain. They may act to induce general ANESTHESIA, in which an unconscious state is achieved, or may act locally to induce numbness or lack of sensation at a targeted site. Anesthetic,Anesthetic Agents,Anesthetic Drugs,Anesthetic Effect,Anesthetic Effects,Agents, Anesthetic,Drugs, Anesthetic,Effect, Anesthetic,Effects, Anesthetic

Related Publications

C D Richards, and A E White
March 1983, British journal of anaesthesia,
C D Richards, and A E White
August 1998, Neuroscience,
C D Richards, and A E White
February 2023, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
C D Richards, and A E White
May 2003, Journal of neurophysiology,
C D Richards, and A E White
January 2004, Yao xue xue bao = Acta pharmaceutica Sinica,
C D Richards, and A E White
August 2001, Yao xue xue bao = Acta pharmaceutica Sinica,
Copied contents to your clipboard!