Bicyclic pyrimidine nucleoside analogues (BCNAs) as highly selective and potent inhibitors of varicella-zoster virus replication. 2002

Jan Balzarini, and Christopher McGuigan
Rega Institute for Medical Research, K. U. Leuven, B-3000 Leuven, Belgium. Jan.Balzarini@rega.kuleuven.ac.be

Bicyclic pyrimidine nucleoside analogues (BCNAs) represent highly potent and selective inhibitors of varicella-zoster virus (VZV) replication in cell culture. The compounds inhibit a variety of clinical VZV strains, in the higher picomolar range, whilst being non-toxic at micromolar concentrations. The compounds do not inhibit the closely related simian varicella virus or any other viruses, including herpes simplex virus type 1 (HSV-1), HSV-2 and cytomegalovirus. The BCNAs owe at least part of their antiviral selectivity to a specific activation/phosphorylation by the VZV-encoded thymidine kinase (TK) and associated thymidylate kinase (dTMP-K) activity, while being not recognized by the closely related HSV-1-encoded TK/dTMP-K enzyme. In addition, the 5'-monophosphates of BCNAs are neither a substrate nor an inhibitor of the cellular dTMP-K, and are not subject of back-conversion to the corresponding nucleosides by 5'-deoxynucleotidases. In contrast to the anti-HSV-1/VZV drug (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU), the BCNAs are not catabolized by human (erythrocyte) or bacterial (Escherichia coli) thymidine phosphorylase to release the free bicyclic pyrimidine base. Also, unlike BVU (the free base of BVDU), the BCNA bases do not inhibit dihydropyrimidine dehydrogenase. Consequently, the catabolism of the anticancer drug 5-fluorouracil (5-FU) is not influenced by the BCNA base in cell-free enzyme assays or in mice that were exposed to combinations of 5-FU with BCNAs or their free base. BCNAs have a good oral bioavailability and, owing to their highly lipophilic nature, are assumed to be able to cross the blood-brain barrier efficiently. Given the above-mentioned favourable properties, BCNAs may represent a promising novel class of highly selective anti-VZV drugs that should be further pursued for clinical application.

UI MeSH Term Description Entries
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011741 Pyrimidine Nucleosides Pyrimidines with a RIBOSE attached that can be phosphorylated to PYRIMIDINE NUCLEOTIDES. Nucleosides, Pyrimidine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006574 Heterocyclic Compounds, 2-Ring A class of heterocyclic compounds that include a two-ring fused structure. Both aromatic and non-aromatic ring structures are included in this category. Fused Heterocyclic Compounds, Two-Ring,Two Ring Heterocyclic Compounds,2-Ring Heterocyclic Compounds,Fused Heterocyclic Compounds, Two Ring,Heterocyclic Compounds, 2 Ring
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D001682 Biological Availability The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action. Availability Equivalency,Bioavailability,Physiologic Availability,Availability, Biologic,Availability, Biological,Availability, Physiologic,Biologic Availability,Availabilities, Biologic,Availabilities, Biological,Availabilities, Physiologic,Availability Equivalencies,Bioavailabilities,Biologic Availabilities,Biological Availabilities,Equivalencies, Availability,Equivalency, Availability,Physiologic Availabilities
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

Jan Balzarini, and Christopher McGuigan
July 2001, Bioorganic & medicinal chemistry letters,
Jan Balzarini, and Christopher McGuigan
October 2022, Bioorganic & medicinal chemistry letters,
Jan Balzarini, and Christopher McGuigan
January 1996, Advances in experimental medicine and biology,
Jan Balzarini, and Christopher McGuigan
January 2007, Antiviral chemistry & chemotherapy,
Jan Balzarini, and Christopher McGuigan
April 2002, Bioorganic & medicinal chemistry letters,
Jan Balzarini, and Christopher McGuigan
January 1995, Microbiology and immunology,
Copied contents to your clipboard!