Effects of vigabatrin on epileptiform abnormal discharges in hippocampal CA3 neurons of spontaneously epileptic rats (SER). 2002

Ryosuke Hanaya, and Masashi Sasa, and Yoshihiro Kiura, and Tadao Serikawa, and Kaoru Kurisu
Department of Neurosurgery, Hiroshima University School of Medicine, Japan. hanaya@hiroshima-u.ac.jp

Vigabatrin, a gamma-amino butyric acid (GABA) transaminase inhibitor, is known to inhibit partial epilepsy in humans. The spontaneously epileptic rat (SER), a double mutant (zi/zi, tm/tm), exhibits both tonic convulsion and absence-like seizures from the age of 8 weeks. Hippocampal CA3 pyramidal neurons in SER show a long-lasting depolarization shift with accompanying repetitive firing when a single stimulus is delivered to the mossy fibers in slice preparations. The effects of vigabatrin on the abnormal excitability of hippocampal CA3 pyramidal neurons in SER were examined to elucidate the mechanism underlying the antiepileptic action of the drug. Intracellular recordings were performed in 24 hippocampal slice preparations of 20 SER aged 8-17 weeks old. Bath application of vigabatrin (1 mM) inhibited the depolarizing shifts with repetitive firing induced by mossy fiber stimulation in 15 min without affecting the first spike and resting membrane potentials in hippocampal CA3 neurons of SER. A higher dose of vigabatrin (10 mM) sometimes inhibited the first spike. However, vigabatrin at doses up to 10 mM did not significantly affect the single action potential elicited by stimulation of the mossy fibers in the hippocampal CA3 neurons of age-matched Wistar rats. In addition, application of vigabatrin (10 mM) did not significantly affect the firing induced by depolarizing pulse applied in the CA3 neurons of the SER, nor the miniature excitatory postsynaptic potential (mEPSP) recorded in the CA3 neurons of SER. The inhibitory effect of vigabatrin (1 mM) on the mossy fiber stimulation-induced depolarization shift with repetitive firing was blocked by concomitant application of bicuculline (10 microM), a GABA(A) receptor antagonist. These findings strongly suggested that GABA increased by inhibition of GABA transaminase with vigabatrin inhibits abnormal excitation of hippocampal CA3 neurons of SER via GABA(A) receptors, although the possibility that the drug acted directly on the GABA(A) receptors of CA3 neurons could not be completely excluded.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D011922 Rats, Mutant Strains Rats bearing mutant genes which are phenotypically expressed in the animals. Mutant Strains Rat,Mutant Strains Rats,Rat, Mutant Strains,Strains Rat, Mutant,Strains Rats, Mutant
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

Ryosuke Hanaya, and Masashi Sasa, and Yoshihiro Kiura, and Tadao Serikawa, and Kaoru Kurisu
February 1993, Experimental neurology,
Ryosuke Hanaya, and Masashi Sasa, and Yoshihiro Kiura, and Tadao Serikawa, and Kaoru Kurisu
June 1992, The Japanese journal of psychiatry and neurology,
Ryosuke Hanaya, and Masashi Sasa, and Yoshihiro Kiura, and Tadao Serikawa, and Kaoru Kurisu
March 2001, Epilepsia,
Ryosuke Hanaya, and Masashi Sasa, and Yoshihiro Kiura, and Tadao Serikawa, and Kaoru Kurisu
July 1995, European journal of pharmacology,
Ryosuke Hanaya, and Masashi Sasa, and Yoshihiro Kiura, and Tadao Serikawa, and Kaoru Kurisu
August 2001, Brain research,
Ryosuke Hanaya, and Masashi Sasa, and Yoshihiro Kiura, and Tadao Serikawa, and Kaoru Kurisu
August 1991, Neuroscience letters,
Ryosuke Hanaya, and Masashi Sasa, and Yoshihiro Kiura, and Tadao Serikawa, and Kaoru Kurisu
March 2004, Naunyn-Schmiedeberg's archives of pharmacology,
Ryosuke Hanaya, and Masashi Sasa, and Yoshihiro Kiura, and Tadao Serikawa, and Kaoru Kurisu
July 1989, Brain research,
Ryosuke Hanaya, and Masashi Sasa, and Yoshihiro Kiura, and Tadao Serikawa, and Kaoru Kurisu
January 1990, Experimental brain research,
Ryosuke Hanaya, and Masashi Sasa, and Yoshihiro Kiura, and Tadao Serikawa, and Kaoru Kurisu
December 2005, Brain research,
Copied contents to your clipboard!