Effect of nicardipine on abnormal excitability of CA3 pyramidal cells in hippocampal slices of spontaneously epileptic rats. 1995

T Momiyama, and K Ishihara, and T Serikawa, and K Moritake, and M Sasa
Department of Pharmacology, Faculty of Medicine, Kyoto University, Japan.

The effects of nicardipine, a Ca2+ channel antagonist, on the abnormal excitability of hippocampal CA3 neurons in spontaneously epileptic rats (SER), a double mutant (zi/zi, tm/tm), were examined to elucidate whether or not the abnormality was due to that of Ca2+ channels. An intracellular recording study was performed using brain slice preparations of SER 12-15 weeks of age, when SER showed both tonic convulsions and absence-like seizures. Bath application of nicardipine (10 nM) completely inhibited the depolarizing shifts lasting for 60-120 ms and accompanying repetitive firings on mossy fiber stimulation in SER. However, this drug did not affect the single action potential induced by the mossy fiber stimulation in CA3 neurons of SER and normal Wistar rats. In the CA3 pyramidal neurons of SER, the Ca2+ spikes induced by the depolarizing pulse applied in the cell in the presence of tetrodotoxin and tetraethylammonium had a different configuration from that in normal Wistar rats. Nicardipine also inhibited the Ca2+ spikes in SER CA3 neurons at a concentration (1 nM) that had no effect on those in normal Wistar rats, while the Ca2+ spikes in Wistar rat CA3 neurons were inhibited by 10 nM nicardipine. These findings suggest that the abnormal excitability of CA3 pyramidal neurons in SER might be attributed to abnormalities of the Ca2+ channels, and that the Ca2+ channel antagonist may be effective as an antiepileptic drug.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009529 Nicardipine A potent calcium channel blockader with marked vasodilator action. It has antihypertensive properties and is effective in the treatment of angina and coronary spasms without showing cardiodepressant effects. It has also been used in the treatment of asthma and enhances the action of specific antineoplastic agents. Antagonil,Cardene,Cardene I.V.,Cardene SR,Dagan,Flusemide,Lecibral,Lincil,Loxen,Lucenfal,Nicardipine Hydrochloride,Nicardipine LA,Nicardipino Ratiopharm,Nicardipino Seid,Perdipine,Ridene,Vasonase,Y-93,Hydrochloride, Nicardipine,LA, Nicardipine,Y 93,Y93
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu

Related Publications

T Momiyama, and K Ishihara, and T Serikawa, and K Moritake, and M Sasa
February 2003, Journal of pharmacological sciences,
T Momiyama, and K Ishihara, and T Serikawa, and K Moritake, and M Sasa
August 2002, Epilepsy research,
T Momiyama, and K Ishihara, and T Serikawa, and K Moritake, and M Sasa
November 2011, Brain research bulletin,
T Momiyama, and K Ishihara, and T Serikawa, and K Moritake, and M Sasa
March 2001, Epilepsia,
T Momiyama, and K Ishihara, and T Serikawa, and K Moritake, and M Sasa
November 1985, Journal of neurophysiology,
T Momiyama, and K Ishihara, and T Serikawa, and K Moritake, and M Sasa
October 1993, Brain research,
T Momiyama, and K Ishihara, and T Serikawa, and K Moritake, and M Sasa
April 2007, Epilepsia,
T Momiyama, and K Ishihara, and T Serikawa, and K Moritake, and M Sasa
June 1988, Brain research,
T Momiyama, and K Ishihara, and T Serikawa, and K Moritake, and M Sasa
January 1989, Neurotoxicology and teratology,
T Momiyama, and K Ishihara, and T Serikawa, and K Moritake, and M Sasa
October 2020, Journal of neurophysiology,
Copied contents to your clipboard!