Calcium-sensing receptor-mediated TNF production in medullary thick ascending limb cells. 2002

Dairong Wang, and Paulina L Pedraza, and Huda Ismail Abdullah, and John C McGiff, and Nicholas R Ferreri
Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.

Medullary thick ascending limb (mTAL) cells in primary culture express the Ca(2+)-sensing receptor (CaR), a G protein-coupled receptor that senses changes in extracellular Ca(2+) (Ca(o)(2+)) concentration, resulting in increases of intracellular Ca(2+) concentration and PKC activity. Exposure of mTAL cells to either Ca(o)(2+) or the CaR-selective agonist poly-L-arginine increased TNF-alpha synthesis. Moreover, the response to Ca(o)(2+) was enhanced in mTAL cells transfected with a CaR overexpression vector. Transfection of mTAL cells with a TNF promoter construct revealed an increase in reporter gene activity after exposure of the cells to Ca(o)(2+), suggesting that intracellular signaling pathways initiated by means of activation of a CaR contribute to TNF synthesis by a mechanism that involves transcription of the TNF gene. Neutralization of TNF activity with an anti-TNF antibody attenuated Ca(2+)-mediated increases in cyclooxygenase-2 (COX-2) protein expression and PGE(2) synthesis, suggesting that TNF exerts an autocrine effect in the mTAL, which contributes to COX-2-mediated PGE(2) production. Preincubation with the PKC inhibitor bisindolylmaleimide I inhibited Ca(2+)-mediated TNF production. Significant inhibition of COX-2 protein expression and PGE(2) synthesis also was observed when cells were challenged with Ca(o)(2+) in the presence of bisindolylmaleimide I. The data suggest that increases in TNF production subsequent to activation of the CaR may be the basis of an important renal mechanism that regulates salt and water excretion.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008138 Loop of Henle The U-shaped portion of the renal tubule in the KIDNEY MEDULLA, consisting of a descending limb and an ascending limb. It is situated between the PROXIMAL KIDNEY TUBULE and the DISTAL KIDNEY TUBULE. Ascending Limb of Loop of Henle,Descending Limb of Loop of Henle,Henle Loop
D008297 Male Males
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002122 Calcium Chloride A salt used to replenish calcium levels, as an acid-producing diuretic, and as an antidote for magnesium poisoning. Calcium Chloride Dihydrate,Calcium Chloride, Anhydrous

Related Publications

Dairong Wang, and Paulina L Pedraza, and Huda Ismail Abdullah, and John C McGiff, and Nicholas R Ferreri
October 2008, American journal of physiology. Renal physiology,
Dairong Wang, and Paulina L Pedraza, and Huda Ismail Abdullah, and John C McGiff, and Nicholas R Ferreri
July 1994, Kidney international,
Dairong Wang, and Paulina L Pedraza, and Huda Ismail Abdullah, and John C McGiff, and Nicholas R Ferreri
July 2005, Transplant international : official journal of the European Society for Organ Transplantation,
Dairong Wang, and Paulina L Pedraza, and Huda Ismail Abdullah, and John C McGiff, and Nicholas R Ferreri
May 2006, American journal of physiology. Renal physiology,
Dairong Wang, and Paulina L Pedraza, and Huda Ismail Abdullah, and John C McGiff, and Nicholas R Ferreri
March 1991, The American journal of physiology,
Dairong Wang, and Paulina L Pedraza, and Huda Ismail Abdullah, and John C McGiff, and Nicholas R Ferreri
December 2006, The Tohoku journal of experimental medicine,
Dairong Wang, and Paulina L Pedraza, and Huda Ismail Abdullah, and John C McGiff, and Nicholas R Ferreri
January 2001, American journal of physiology. Renal physiology,
Dairong Wang, and Paulina L Pedraza, and Huda Ismail Abdullah, and John C McGiff, and Nicholas R Ferreri
January 1998, Kidney & blood pressure research,
Dairong Wang, and Paulina L Pedraza, and Huda Ismail Abdullah, and John C McGiff, and Nicholas R Ferreri
August 2009, American journal of physiology. Renal physiology,
Dairong Wang, and Paulina L Pedraza, and Huda Ismail Abdullah, and John C McGiff, and Nicholas R Ferreri
December 1994, The American journal of physiology,
Copied contents to your clipboard!