Structure/function analysis of Na(+)-K(+)-ATPase central isoform-specific region: involvement in PKC regulation. 2002

Sandrine V Pierre, and Marie-Josée Duran, and Deborah L Carr, and Thomas A Pressley
Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA. Sandrine.Pierre@ttuhsc.edu

Specific functions served by the various Na(+)-K(+)-ATPase alpha-isoforms are likely to originate in regions of structural divergence within their primary structures. The isoforms are nearly identical, with the exception of the NH(2) terminus and a 10-residue region near the center of each molecule (isoform-specific region; ISR). Although the NH(2) terminus has been clearly identified as a source of isoform functional diversity, other regions seem to be involved. We investigated whether the central ISR could also contribute to isoform variability. We constructed chimeric molecules in which the central ISRs of rat alpha(1)- and alpha(2)-isoforms were exchanged. After stable transfection into opossum kidney cells, the chimeras were characterized for two properties known to differ dramatically among the isoforms: their K(+) deocclusion pattern and their response to PKC activation. Comparisons with rat full-length alpha(1)- and alpha(2)-isoforms expressed under the same conditions suggest an involvement of the central ISR in the response to PKC but not in K(+) deocclusion.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012413 Rubidium An element that is an alkali metal. It has an atomic symbol Rb, atomic number 37, and atomic weight 85.47. It is used as a chemical reagent and in the manufacture of photoelectric cells.

Related Publications

Sandrine V Pierre, and Marie-Josée Duran, and Deborah L Carr, and Thomas A Pressley
June 1992, Journal of bioenergetics and biomembranes,
Sandrine V Pierre, and Marie-Josée Duran, and Deborah L Carr, and Thomas A Pressley
January 1980, The International journal of biochemistry,
Sandrine V Pierre, and Marie-Josée Duran, and Deborah L Carr, and Thomas A Pressley
July 2022, International journal of molecular sciences,
Sandrine V Pierre, and Marie-Josée Duran, and Deborah L Carr, and Thomas A Pressley
August 1989, The American journal of physiology,
Sandrine V Pierre, and Marie-Josée Duran, and Deborah L Carr, and Thomas A Pressley
January 1986, Kidney international,
Sandrine V Pierre, and Marie-Josée Duran, and Deborah L Carr, and Thomas A Pressley
November 1997, Journal of neurochemistry,
Sandrine V Pierre, and Marie-Josée Duran, and Deborah L Carr, and Thomas A Pressley
January 2012, Biofizika,
Sandrine V Pierre, and Marie-Josée Duran, and Deborah L Carr, and Thomas A Pressley
January 1994, Renal physiology and biochemistry,
Sandrine V Pierre, and Marie-Josée Duran, and Deborah L Carr, and Thomas A Pressley
June 2019, Journal of cellular physiology,
Sandrine V Pierre, and Marie-Josée Duran, and Deborah L Carr, and Thomas A Pressley
April 2003, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!