Na,K-ATPase: isoform structure, function, and expression. 1992

J B Lingrel
Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Ohio 45267-0524.

An interesting feature of the Na,K-ATPase is the multiplicity of alpha and beta isoforms. Three isoforms exist for the alpha subunit, alpha 1, alpha 2, and alpha 3, as well for the beta subunit, beta 1, beta 2, and beta 3. The functional significance of these isoforms is unknown, but they are expressed in a tissue- and developmental-specific manner. For example, all three isoforms of the alpha subunit are present in the brain, while only alpha 1 is present in kidney and lung, and alpha 2 represents the major isoform in skeletal muscle. Therefore, it is possible that each of these isoforms confers different properties on the Na,K-ATPase which allows effective coupling to the physiological process for which it provides energy in the form of an ion gradient. It is also possible that the multiple isoforms are the result of gene triplication and that each isoform exhibits similar enzymatic properties. In this case, the expression of the triplicated genes would be individually regulated to provide the appropriate amount of Na,K-ATPase to the particular tissue and at specific times of development. While differences are observed in such parameters as Na+ affinity and sensitivity to cardiac glycosides, it is not known if these properties play a functional role within the cell. Site-directed mutagenesis has identified amino acid residues in the first extracellular region of the alpha subunit as major determinants in the differential sensitivity to cardiac glycosides. Similar studies have failed to identify residues in the second extracellular region involved in cardiac glycoside inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002301 Cardiac Glycosides Cyclopentanophenanthrenes with a 5- or 6-membered lactone ring attached at the 17-position and SUGARS attached at the 3-position. Plants they come from have long been used in congestive heart failure. They increase the force of cardiac contraction without significantly affecting other parameters, but are very toxic at larger doses. Their mechanism of action usually involves inhibition of the NA(+)-K(+)-EXCHANGING ATPASE and they are often used in cell biological studies for that purpose. Cardiac Glycoside,Cardiotonic Steroid,Cardiotonic Steroids,Glycoside, Cardiac,Glycosides, Cardiac,Steroid, Cardiotonic,Steroids, Cardiotonic
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

J B Lingrel
January 1984, Annals of neurology,
J B Lingrel
September 2005, Frontiers in bioscience : a journal and virtual library,
J B Lingrel
January 1991, Annual review of physiology,
J B Lingrel
January 1980, The International journal of biochemistry,
J B Lingrel
November 2002, American journal of physiology. Renal physiology,
J B Lingrel
January 1986, Advances in neurology,
J B Lingrel
March 1996, Nihon rinsho. Japanese journal of clinical medicine,
J B Lingrel
July 1990, Biochimica et biophysica acta,
J B Lingrel
January 1996, Basic research in cardiology,
Copied contents to your clipboard!