Assurance enzyme immunoassay eight hour method for detection of enterohemorrhagic Escherichia coli O157:H7 in raw and cooked beef (modification of AOAC Official Method 996.10): collaborative study. 2002

Philip T Feldsine, and David E Kerr, and Stephanie C Leung, and Andrew H Lienau, and Stephanie M Miller, and Linda A Mui
BioControl Systems, Inc., Bellevue, WA 98005, USA. ptf@biocontrolsys.com

AOAC Official Method 996.10, Assurance Enzyme Immunoassay (EIA) for Escherichia coli O157:H7 (EHEC), was modified to incorporate a new enrichment protocol using BioControl EHEC8 medium for testing raw and cooked beef. Foods were tested by EIA and the U.S. Department of Agriculture/Food Safety and Inspection Service (USDA/FSIS) enrichment conditions and the FDA Bacteriological Analytical Manual (BAM) isolation and confirmation techniques. A total of 14 collaborators participated. Raw and cooked ground beef were inoculated with E. coli O157:H7 at 2 different levels: a high level where predominantly positive results were expected, and a low level where fractional recovery was anticipated. Collaborators tested 378 test portions and controls by both the 8 h EIA and the USDA/FSIS enrichment methods, for a total of 756 test portions. Of the 378 paired test portions, 75 were positive and 212 were negative by both methods. Thirteen test portions were presumptively positive by EIA and could not be confirmed culturally; 30 were negative by EIA, but confirmed positive by culture; and 65 were negative by the culture method, but confirmed positive by the EIA method. There was no statistical difference between results obtained with the Assurance EIA for EHEC 8 h method and the culture method for raw ground beef. The Assurance EIA had a significantly higher recovery for cooked beef.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008460 Meat The edible portions of any animal used for food including cattle, swine, goats/sheep, poultry, fish, shellfish, and game. Meats
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005506 Food Contamination The presence in food of harmful, unpalatable, or otherwise objectionable foreign substances, e.g. chemicals, microorganisms or diluents, before, during, or after processing or storage. Food Adulteration,Adulteration, Food,Adulterations, Food,Contamination, Food,Contaminations, Food,Food Adulterations,Food Contaminations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D019453 Escherichia coli O157 A verocytotoxin-producing serogroup belonging to the O subfamily of Escherichia coli which has been shown to cause severe food-borne disease. A strain from this serogroup, serotype H7, which produces SHIGA TOXINS, has been linked to human disease outbreaks resulting from contamination of foods by E. coli O157 from bovine origin. E coli O157,E coli O157-H7,Escherichia coli O157-H7

Related Publications

Philip T Feldsine, and David E Kerr, and Stephanie C Leung, and Andrew H Lienau, and Stephanie M Miller, and Linda A Mui
January 1997, Journal of AOAC International,
Philip T Feldsine, and David E Kerr, and Stephanie C Leung, and Andrew H Lienau, and Stephanie M Miller, and Linda A Mui
January 2001, Journal of AOAC International,
Philip T Feldsine, and David E Kerr, and Stephanie C Leung, and Andrew H Lienau, and Stephanie M Miller, and Linda A Mui
January 2011, Journal of AOAC International,
Philip T Feldsine, and David E Kerr, and Stephanie C Leung, and Andrew H Lienau, and Stephanie M Miller, and Linda A Mui
May 1992, Applied and environmental microbiology,
Philip T Feldsine, and David E Kerr, and Stephanie C Leung, and Andrew H Lienau, and Stephanie M Miller, and Linda A Mui
January 1997, Journal of AOAC International,
Philip T Feldsine, and David E Kerr, and Stephanie C Leung, and Andrew H Lienau, and Stephanie M Miller, and Linda A Mui
June 2004, Biomedical microdevices,
Philip T Feldsine, and David E Kerr, and Stephanie C Leung, and Andrew H Lienau, and Stephanie M Miller, and Linda A Mui
March 2019, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
Philip T Feldsine, and David E Kerr, and Stephanie C Leung, and Andrew H Lienau, and Stephanie M Miller, and Linda A Mui
January 2009, Journal of AOAC International,
Philip T Feldsine, and David E Kerr, and Stephanie C Leung, and Andrew H Lienau, and Stephanie M Miller, and Linda A Mui
January 1999, International journal of food microbiology,
Philip T Feldsine, and David E Kerr, and Stephanie C Leung, and Andrew H Lienau, and Stephanie M Miller, and Linda A Mui
May 1998, Journal of food protection,
Copied contents to your clipboard!