New oxamato-bridged trinuclear Cu(II)-Cu(II)-Cu(II) complexes with hydrogen-bond supramolecular structures: synthesis and magneto-structural studies. 2002

Javier Tercero, and Carmen Diaz, and Joan Ribas, and José Mahía, and Miguel Angel Maestro
Departament de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.

Three oxamato-bridged copper(II) complexes of formula [(Cu(H(2)O)(tmen)Cu(tmen))(mu-Cu(H(2)O)(Me(2)pba))](n)((PF(6))(2))(n).2nH(2)O (1), [(Cu(H(2)O)(tmen)Cu(NCS)(tmen))(mu-Cu(H(2)O)(Me(2)pba))](2)(ClO(4))(2).4H(2)O (2), and [(Cu(H(2)O)(tmen)Cu(NCS)(tmen))(mu-Cu(H(2)O)(Me(2)pba))](2)(PF(6))(2).4H(2)O (3), where Me(2)pba = 2,2-dimethyl-1,3-propylenebis(oxamato) and tmen = N,N,N',N'-tetramethylethylenediamine, have been synthesized and characterized. Their crystal structures were solved. Complex 1 crystallizes in the monoclinic system, space group P2(1), with a = 15.8364(3) A, b =8.4592(2) A, c = 15.952 A, beta = 101.9070(10) degrees, and Z = 2. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 6.69530(10) A, b = 18.2441(3) A, c = 31.6127(5) A, beta = 90.1230(10) degrees, and Z = 4. Complex 3 crystallizes in the monoclinic system, space group P2(1)/c, with a = 6.68970(10) A, b = 18.150 A, c = 32.1949(4) A, beta = 90.0820(10) degrees, and Z = 4. The three complexes have a central core in common: a trinuclear Cu(II) complex with the two terminal Cu(II) ions blocked by N,N,N',N'-tetramethylethylenediamine. The structure of complex 1 consists of trinuclear cationic entities connected by hydrogen bonds to produce a supramolecular one-dimensional array. The structure of complexes 2 and 3 consist of trinuclear cationic entities linked by pairs by hydrogen bonds between the water molecule of the central Cu(II) and one oxygen atom of the oxamato ligand of the neighboring entity, forming a hexanuclear complex. The magnetic properties of the three complexes were studied by susceptibility vs temperature measurement. For complexes 1-3 the fit was made by the irreducible tensor operator (ITO). The values obtained were J(1) = -386.48 cm(-1) and J(2) = 1.94 cm(-1) for 1, J(1) = -125.77 cm(-1) and J(2) = 0.85 cm(-1) for 2, and J(1) = -135.50 cm(-1) and J(2) = 0.94 cm(-1) for 3. In complex 1, the coordination polyhedron of the terminal Cu(II) atoms can be considered as square pyramidal; the apical positions are filled by the oxygen atom from a water molecule in the former and a F atom of the hexafluorophosphate anion in the latter showing a quasi-planar [Cu(CuMe(2)pba)Cu] network. For complexes 2 and 3, the square pyramidal environment of the terminal Cu(II) ions was strongly modified. To our knowledge, this is the first time that the longest distance (apical) in complexes with oxamato derivatives and bidentate amines as blocking ligands has been reported in one of the oxamato arms. The great difference in J(1) values between 1 and the other two complexes is interpreted as an orbital reversal of the magnetic orbitals of the terminal Cu(II) ions in 2 and 3.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009942 Organometallic Compounds A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed) Metallo-Organic Compound,Metallo-Organic Compounds,Metalloorganic Compound,Organometallic Compound,Metalloorganic Compounds,Compound, Metallo-Organic,Compound, Metalloorganic,Compound, Organometallic,Compounds, Metallo-Organic,Compounds, Metalloorganic,Compounds, Organometallic,Metallo Organic Compound,Metallo Organic Compounds
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005029 Ethylenediamines Derivatives of ethylenediamine (the structural formula NH2CH2CH2NH2).
D012545 Schiff Bases Condensation products of aromatic amines and aldehydes forming azomethines substituted on the N atom, containing the general formula R-N:CHR. (From Grant & Hackh's Chemical Dictionary, 5th ed) Schiff Base,Base, Schiff,Bases, Schiff
D013324 Strontium An element of the alkaline earth family of metals. It has the atomic symbol Sr, atomic number 38, and atomic weight 87.62.
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies

Related Publications

Javier Tercero, and Carmen Diaz, and Joan Ribas, and José Mahía, and Miguel Angel Maestro
March 2012, Dalton transactions (Cambridge, England : 2003),
Javier Tercero, and Carmen Diaz, and Joan Ribas, and José Mahía, and Miguel Angel Maestro
July 2018, Dalton transactions (Cambridge, England : 2003),
Javier Tercero, and Carmen Diaz, and Joan Ribas, and José Mahía, and Miguel Angel Maestro
December 2010, Dalton transactions (Cambridge, England : 2003),
Javier Tercero, and Carmen Diaz, and Joan Ribas, and José Mahía, and Miguel Angel Maestro
March 2020, Dalton transactions (Cambridge, England : 2003),
Javier Tercero, and Carmen Diaz, and Joan Ribas, and José Mahía, and Miguel Angel Maestro
July 2019, Dalton transactions (Cambridge, England : 2003),
Javier Tercero, and Carmen Diaz, and Joan Ribas, and José Mahía, and Miguel Angel Maestro
August 2008, Inorganic chemistry,
Javier Tercero, and Carmen Diaz, and Joan Ribas, and José Mahía, and Miguel Angel Maestro
October 2017, Inorganic chemistry,
Javier Tercero, and Carmen Diaz, and Joan Ribas, and José Mahía, and Miguel Angel Maestro
April 2004, Dalton transactions (Cambridge, England : 2003),
Javier Tercero, and Carmen Diaz, and Joan Ribas, and José Mahía, and Miguel Angel Maestro
August 1997, Inorganic chemistry,
Copied contents to your clipboard!