Application of X-ray microscopy in analysis of living hydrated cells. 2002

Yoshimasa Yamamoto, and Kunio Shinohara
Department of Medical Microbiology and Immunology, University of South Florida College of Medicine, Tampa 33612, USA. yyamamot@hsc.usf.edu

Because there is a limit for analysis of fine hydrophilic cell structures of living cells in medium by ordinary techniques, including electron microscopy, the development of a new technology to overcome such limitation is highly desirable. In this regard, soft X-ray microscopy (high-resolution X-ray imaging of structures), which does not require any special procedures for sample preparation, has been developed and applied to analyze structures of biological specimens. In this article, application of two types of X-ray microscopes, which use laser-produced plasma X-rays or synchrotron radiation to image the structure of macrophage cells, is introduced as an example of a novel approach to analysis of biological specimens. Both types of X-ray microscopy show the network of fine fibrillar surface structures on macrophages in medium. Ordinary transmission and scanning electron microscopy and light microscopy also show the presence of such structures, but electron microscopy showed alterations due to sample processing and light microscopy did not show a clear image due to low resolution. Thus, X-ray microscopy has the potential capability to analyze structures of live cells in a hydrated condition and may reveal a function-related structural alignment of cells in their natural form.

UI MeSH Term Description Entries
D007834 Lasers An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum. Masers,Continuous Wave Lasers,Pulsed Lasers,Q-Switched Lasers,Continuous Wave Laser,Laser,Laser, Continuous Wave,Laser, Pulsed,Laser, Q-Switched,Lasers, Continuous Wave,Lasers, Pulsed,Lasers, Q-Switched,Maser,Pulsed Laser,Q Switched Lasers,Q-Switched Laser
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008853 Microscopy The use of instrumentation and techniques for visualizing material and details that cannot be seen by the unaided eye. It is usually done by enlarging images, transmitted by light or electron beams, with optical or magnetic lenses that magnify the entire image field. With scanning microscopy, images are generated by collecting output from the specimen in a point-by-point fashion, on a magnified scale, as it is scanned by a narrow beam of light or electrons, a laser, a conductive probe, or a topographical probe. Compound Microscopy,Hand-Held Microscopy,Light Microscopy,Optical Microscopy,Simple Microscopy,Hand Held Microscopy,Microscopy, Compound,Microscopy, Hand-Held,Microscopy, Light,Microscopy, Optical,Microscopy, Simple
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations
D017356 Synchrotrons Devices for accelerating protons or electrons in closed orbits where the accelerating voltage and magnetic field strength varies (the accelerating voltage is held constant for electrons) in order to keep the orbit radius constant. Synchrotron
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Yoshimasa Yamamoto, and Kunio Shinohara
March 2013, Physical review letters,
Yoshimasa Yamamoto, and Kunio Shinohara
February 1981, The Journal of cell biology,
Yoshimasa Yamamoto, and Kunio Shinohara
March 2017, Scientific reports,
Yoshimasa Yamamoto, and Kunio Shinohara
November 1997, Journal of microscopy,
Yoshimasa Yamamoto, and Kunio Shinohara
January 1996, Scanning microscopy. Supplement,
Yoshimasa Yamamoto, and Kunio Shinohara
November 2009, Physical review letters,
Yoshimasa Yamamoto, and Kunio Shinohara
January 2015, Physical review letters,
Yoshimasa Yamamoto, and Kunio Shinohara
January 1980, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!