Lithium modulates expression of TRH receptors and TRH-related peptides in rat brain. 2002

A Sattin, and S S Senanayake, and A E Pekary
Research Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.

Lithium is an established mood stabilizer and neuroprotective agent frequently used in the treatment of bipolar disorder and as an adjuvant in drug-resistant unipolar depression. The mechanisms underlying both the therapeutic efficacy of lithium and the exacerbation of symptoms following rapid withdrawal are not understood. From previous studies showing antidepressant and neuroprotective activities of thyrotropin releasing hormone (TRH) and TRH-related neuropeptides we hypothesized that lithium may have substantial effects on the expression and secretion of these peptides and/or their receptors in various rat brain regions involved in the regulation of mood. Chronic lithium effect on TRH receptor binding studies: The effect of 1 and 2 weeks of dietary lithium on [(3)H]3-Me-His-TRH binding to plasma membranes of nucleus accumbens, amygdala and pituitary of young adult male Wistar and the endogenously 'depressed' Wistar Kyoto (WKY) rats was measured by the method of Burt and Taylor [Burt, D.R., Taylor, R.L., Endocrinology 106 (1980) 1416-1423]. Acute, chronic and withdrawal effect of lithium on TRH and TRH-like peptide levels in young, adult male Sprague-Dawley rats: Rats were divided into four lithium treatment groups. Control animals received a standard laboratory rodent chow. The acute group received a single i.p. injection of 1.5 milli-equivalents of LiCl 2 h prior to killing. The chronic and withdrawal groups received standard rodent chow containing 1.7 g/kg LiCl for 2 weeks. Withdrawal rats were returned to standard chow 48 h prior to killing while the chronic animals continued on the LiCl diet. TRH, TRH-Gly (pGlu-His-Pro-Gly, a TRH precursor), EEP (pGlu-Glu-Pro-NH(2), a TRH-like peptide with antidepressant activity) and Ps4 (a prepro-TRH-derived TRH-enhancing decapeptide) immunoreactivity (IR) were measured in 13 brain regions. The remaining samples were pooled and fractionated by high-pressure liquid chromatography followed by EEP radioimmunoassay. Chronic lithium treatment increased [(3)H]3Me-TRH binding in the nucleus accumbens and amygdala about two-fold in both Wistar and WKY rats but no change was observed in pituitary binding. The most widespread changes in TRH and TRH-related peptide levels were observed in the withdrawal group compared to the controls. The direction of change for the total IR was consistent for all TRH-IR and TRH-related peptide-IR within a given tissue. For example, withdrawal increased all peptide levels in the pyriform cortex and striatum but decreased these levels in the anterior cingulate and lateral cerebellum. Both acute injection and chronic treatment with LiCl decreased TRH and TRH-related peptide levels in the entorhinal cortex. Acute injection and withdrawal both increased EEP-IR in striatum by more than two-fold. The acute effects are most likely due to changes in the release of these peptides since 2 h is not sufficient time for alterations in peptide biosynthesis. Chronic treatment increased levels of pGlu-Phe-Pro-NH(2) levels in hippocampus, pGlu-Leu-Pro-NH(2), and peak '2' in septum by more than four-fold. The present results are consistent with a component role for TRH and related peptides in the mood-altering effects of lithium administration and withdrawal frequently observed during treatment for depression and bipolar disorder.

UI MeSH Term Description Entries
D008297 Male Males
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011498 Protein Precursors Precursors, Protein
D011761 Pyrrolidonecarboxylic Acid A cyclized derivative of L-GLUTAMIC ACID. Elevated blood levels may be associated with problems of GLUTAMINE or GLUTATHIONE metabolism. 5-Oxoproline,Pidolic Acid,Pyroglutamic Acid,5-Ketoproline,5-Oxopyrrolidine-2-Carboxylic Acid,Magnesium Pidolate,Pyroglutamate,Pidolate, Magnesium
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004334 Drug Administration Schedule Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience. Administration Schedule, Drug,Administration Schedules, Drug,Drug Administration Schedules,Schedule, Drug Administration,Schedules, Drug Administration
D000208 Acute Disease Disease having a short and relatively severe course. Acute Diseases,Disease, Acute,Diseases, Acute

Related Publications

A Sattin, and S S Senanayake, and A E Pekary
July 2001, Peptides,
A Sattin, and S S Senanayake, and A E Pekary
January 2008, Neuroendocrinology,
A Sattin, and S S Senanayake, and A E Pekary
April 2004, Peptides,
A Sattin, and S S Senanayake, and A E Pekary
May 1990, European journal of pharmacology,
A Sattin, and S S Senanayake, and A E Pekary
January 1989, Annals of the New York Academy of Sciences,
A Sattin, and S S Senanayake, and A E Pekary
January 1982, Peptides,
A Sattin, and S S Senanayake, and A E Pekary
January 1999, Life sciences,
A Sattin, and S S Senanayake, and A E Pekary
January 1985, Acta pharmacologica et toxicologica,
A Sattin, and S S Senanayake, and A E Pekary
December 1983, Regulatory peptides,
A Sattin, and S S Senanayake, and A E Pekary
February 2022, BMC neuroscience,
Copied contents to your clipboard!