Patterns of gene expression in atrophying skeletal muscles: response to food deprivation. 2002

R Thomas Jagoe, and Stewart H Lecker, and Marcelo Gomes, and Alfred L Goldberg
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.

During fasting and many systemic diseases, muscle undergoes rapid loss of protein and functional capacity. To define the transcriptional changes triggering muscle atrophy and energy conservation in fasting, we used cDNA microarrays to compare mRNAs from muscles of control and food-deprived mice. Expression of >94% of genes did not change, but interesting patterns emerged among genes that were differentially expressed: 1) mRNAs encoding polyubiquitin, ubiquitin extension proteins, and many (but not all) proteasome subunits increased, which presumably contributes to accelerated protein breakdown; 2) a dramatic increase in mRNA for the ubiquitin ligase, atrogin-1, but not most E3s; 3) a significant suppression of mRNA for myosin binding protein H (but not other myofibrillar proteins) and IGF binding protein 5, which may favor cell protein loss; 4) decreases in mRNAs for several glycolytic enzymes and phosphorylase kinase subunits, and dramatic increases in mRNAs for pyruvate dehydrogenase kinase 4 and glutamine synthase, which should promote glucose sparing and gluconeogenesis. During fasting, metallothionein mRNA increased dramatically, mRNAs for extracellular matrix components fell, and mRNAs that may favor cap-independent mRNA translation rose. Significant changes occurred in mRNAs for many growth-related proteins and transcriptional regulators. These transcriptional changes indicate a complex adaptive program that should favor protein degradation and suppress glucose oxidation in muscle. Similar analysis of muscles atrophying for other causes is allowing us to identify a set of atrophy-specific changes in gene expression.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005508 Food Deprivation The withholding of food in a structured experimental situation. Deprivation, Food,Deprivations, Food,Food Deprivations
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005974 Glutamate-Ammonia Ligase An enzyme that catalyzes the conversion of ATP, L-glutamate, and NH3 to ADP, orthophosphate, and L-glutamine. It also acts more slowly on 4-methylene-L-glutamate. (From Enzyme Nomenclature, 1992) EC 6.3.1.2. Glutamine Synthetase,Glutamate Ammonia Ligase (ADP),Glutamate Ammonia Ligase,Ligase, Glutamate-Ammonia,Synthetase, Glutamine

Related Publications

R Thomas Jagoe, and Stewart H Lecker, and Marcelo Gomes, and Alfred L Goldberg
November 1998, Journal of applied physiology (Bethesda, Md. : 1985),
R Thomas Jagoe, and Stewart H Lecker, and Marcelo Gomes, and Alfred L Goldberg
January 2010, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
R Thomas Jagoe, and Stewart H Lecker, and Marcelo Gomes, and Alfred L Goldberg
October 2021, Genes,
R Thomas Jagoe, and Stewart H Lecker, and Marcelo Gomes, and Alfred L Goldberg
July 1997, The Journal of clinical investigation,
R Thomas Jagoe, and Stewart H Lecker, and Marcelo Gomes, and Alfred L Goldberg
August 1976, The American journal of physiology,
R Thomas Jagoe, and Stewart H Lecker, and Marcelo Gomes, and Alfred L Goldberg
January 2012, PloS one,
R Thomas Jagoe, and Stewart H Lecker, and Marcelo Gomes, and Alfred L Goldberg
December 2015, Muscle & nerve,
R Thomas Jagoe, and Stewart H Lecker, and Marcelo Gomes, and Alfred L Goldberg
September 2022, Scientific data,
R Thomas Jagoe, and Stewart H Lecker, and Marcelo Gomes, and Alfred L Goldberg
September 2007, Journal of animal science,
R Thomas Jagoe, and Stewart H Lecker, and Marcelo Gomes, and Alfred L Goldberg
July 2020, FEBS open bio,
Copied contents to your clipboard!