Changes in Na(+)-K(+)-Cl(-) cotransporter immunoreactivity in the gerbil hippocampus following spontaneous seizure. 2002

Tae-Cheon Kang, and Sung-Jin An, and Seung-Kook Park, and In-Koo Hwang, and Jae Chun Bae, and Jun-Gyo Suh, and Yang-Seok Oh, and Moo Ho Won
Department of Anatomy, College of Medicine, Hallym University, 200-702 Kangwon-Do, Chunchon, South Korea. tckang@hallym.ac.kr

The immunoreactivity of Na(+)-K(+)-Cl(-) cotransporter (NKCC) in the gerbil hippocampus associated with various sequelae of spontaneous seizures were investigated in order to identify the roles of NKCC in the epileptogenesis and the recovery mechanisms in these animals. The NKCC immunoreactivities in the CA2-3 regions, the subiculum and the entorhinal cortex, were significantly more intensified in the pre-seizure group of seizure sensitive (SS) gerbils than in the seizure resistant (SR) gerbils. Following the on-set of seizure, the immunoreactivity of NKCC was significantly changed. In the hippocampal complex except the CA1 region, NKCC immunoreactivity in GABAergic neurons was significantly decreased 30 min after seizure on-set, versus the pre-seizure group. On the other hand, NKCC immunoreactivity was dramatically elevated in the CA1 regions, and 3 h postictal NKCC immunoreactivity increased significantly in the dentate gyrus and the dendrites of the pyramidal cells in the CA2-3 regions. These findings suggest that altered NKCC expression may be associated with seizure activity, and have an important role in the postictal recovery by regulating GABA-mediated inhibitory circuit in the hippocampal complex of the gerbil.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005849 Gerbillinae A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys. Gerbils,Jird,Meriones,Psammomys,Rats, Sand,Gerbil,Jirds,Merione,Rat, Sand,Sand Rat,Sand Rats
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012640 Seizures Clinical or subclinical disturbances of cortical function due to a sudden, abnormal, excessive, and disorganized discharge of brain cells. Clinical manifestations include abnormal motor, sensory and psychic phenomena. Recurrent seizures are usually referred to as EPILEPSY or "seizure disorder." Absence Seizure,Absence Seizures,Atonic Absence Seizure,Atonic Seizure,Clonic Seizure,Complex Partial Seizure,Convulsion,Convulsions,Convulsive Seizure,Convulsive Seizures,Epileptic Seizure,Epileptic Seizures,Generalized Absence Seizure,Generalized Tonic-Clonic Seizures,Jacksonian Seizure,Myoclonic Seizure,Non-Epileptic Seizure,Nonepileptic Seizure,Partial Seizure,Seizure,Seizures, Convulsive,Seizures, Focal,Seizures, Generalized,Seizures, Motor,Seizures, Sensory,Tonic Clonic Seizure,Tonic Seizure,Tonic-Clonic Seizure,Atonic Absence Seizures,Atonic Seizures,Clonic Seizures,Complex Partial Seizures,Convulsion, Non-Epileptic,Generalized Absence Seizures,Myoclonic Seizures,Non-Epileptic Seizures,Nonepileptic Seizures,Partial Seizures,Petit Mal Convulsion,Seizures, Auditory,Seizures, Clonic,Seizures, Epileptic,Seizures, Gustatory,Seizures, Olfactory,Seizures, Somatosensory,Seizures, Tonic,Seizures, Tonic-Clonic,Seizures, Vertiginous,Seizures, Vestibular,Seizures, Visual,Single Seizure,Tonic Seizures,Tonic-Clonic Seizures,Absence Seizure, Atonic,Absence Seizure, Generalized,Absence Seizures, Atonic,Absence Seizures, Generalized,Auditory Seizure,Auditory Seizures,Clonic Seizure, Tonic,Clonic Seizures, Tonic,Convulsion, Non Epileptic,Convulsion, Petit Mal,Convulsions, Non-Epileptic,Focal Seizure,Focal Seizures,Generalized Seizure,Generalized Seizures,Generalized Tonic Clonic Seizures,Generalized Tonic-Clonic Seizure,Gustatory Seizure,Gustatory Seizures,Motor Seizure,Motor Seizures,Non Epileptic Seizure,Non Epileptic Seizures,Non-Epileptic Convulsion,Non-Epileptic Convulsions,Olfactory Seizure,Olfactory Seizures,Partial Seizure, Complex,Partial Seizures, Complex,Seizure, Absence,Seizure, Atonic,Seizure, Atonic Absence,Seizure, Auditory,Seizure, Clonic,Seizure, Complex Partial,Seizure, Convulsive,Seizure, Epileptic,Seizure, Focal,Seizure, Generalized,Seizure, Generalized Absence,Seizure, Generalized Tonic-Clonic,Seizure, Gustatory,Seizure, Jacksonian,Seizure, Motor,Seizure, Myoclonic,Seizure, Non-Epileptic,Seizure, Nonepileptic,Seizure, Olfactory,Seizure, Partial,Seizure, Sensory,Seizure, Single,Seizure, Somatosensory,Seizure, Tonic,Seizure, Tonic Clonic,Seizure, Tonic-Clonic,Seizure, Vertiginous,Seizure, Vestibular,Seizure, Visual,Seizures, Generalized Tonic-Clonic,Seizures, Nonepileptic,Sensory Seizure,Sensory Seizures,Single Seizures,Somatosensory Seizure,Somatosensory Seizures,Tonic Clonic Seizures,Tonic-Clonic Seizure, Generalized,Tonic-Clonic Seizures, Generalized,Vertiginous Seizure,Vertiginous Seizures,Vestibular Seizure,Vestibular Seizures,Visual Seizure,Visual Seizures
D018728 Entorhinal Cortex Cerebral cortex region on the medial aspect of the PARAHIPPOCAMPAL GYRUS, immediately caudal to the OLFACTORY CORTEX of the uncus. The entorhinal cortex is the origin of the major neural fiber system afferent to the HIPPOCAMPAL FORMATION, the so-called PERFORANT PATHWAY. Brodmann Area 28,Brodmann Area 34,Brodmann's Area 28,Brodmann's Area 34,Entorhinal Area,Area Entorhinalis,Entorhinal Cortices,Secondary Olfactory Cortex,Area 28, Brodmann,Area 28, Brodmann's,Area 34, Brodmann,Area 34, Brodmann's,Area, Entorhinal,Brodmanns Area 28,Brodmanns Area 34,Cortex, Entorhinal,Cortex, Secondary Olfactory,Entorhinal Areas,Olfactory Cortex, Secondary,Secondary Olfactory Cortices
D018891 Dentate Gyrus GRAY MATTER situated above the GYRUS HIPPOCAMPI. It is composed of three layers. The molecular layer is continuous with the HIPPOCAMPUS in the hippocampal fissure. The granular layer consists of closely arranged spherical or oval neurons, called GRANULE CELLS, whose AXONS pass through the polymorphic layer ending on the DENDRITES of PYRAMIDAL CELLS in the hippocampus. Dentate Fascia,Fascia Dentata,Gyrus Dentatus,Area Dentata,CA4 Field of Hippocampal Formation,CA4 Region, Hippocampal,CA4 of Lorente de No,Cornu Ammonis 4 Area,Hilus Gyri Dentati,Hilus of Dentate Gyrus,Hilus of the Fascia Dentata,Hippocampal CA4 Field,Hippocampal Sector CA4,Area Dentatas,CA4 Field, Hippocampal,CA4, Hippocampal Sector,Dentata, Area,Dentata, Fascia,Dentatas, Area,Fascia, Dentate,Field, Hippocampal CA4,Gyrus, Dentate,Hippocampal CA4 Region,Region, Hippocampal CA4,Sector CA4, Hippocampal
D028021 Sodium-Potassium-Chloride Symporters A subclass of symporters that specifically transport SODIUM; POTASSIUM and CHLORIDE ions across cellular membranes in a tightly coupled electroneutrality process. NKCC Proteins,NKCCs,Sodium-Potassium-Chloride Cotransporters,Na(+), K(+), Cl(-)-Cotransporter,Na-K-Cl-Symporter,Na-K-Cl-Transporter,NaCl-KCl Cotransporter,NaK2Cl Symporter,Sodium, Potassium, Chloride-Cotransporter,Sodium-Potassium-Chloride Cotransporter,Cotransporter, NaCl-KCl,Cotransporter, Sodium-Potassium-Chloride,Na K Cl Symporter,Na K Cl Transporter,NaCl KCl Cotransporter,Sodium Potassium Chloride Cotransporter,Sodium Potassium Chloride Cotransporters,Sodium Potassium Chloride Symporters,Symporter, NaK2Cl

Related Publications

Tae-Cheon Kang, and Sung-Jin An, and Seung-Kook Park, and In-Koo Hwang, and Jae Chun Bae, and Jun-Gyo Suh, and Yang-Seok Oh, and Moo Ho Won
April 1998, Hearing research,
Tae-Cheon Kang, and Sung-Jin An, and Seung-Kook Park, and In-Koo Hwang, and Jae Chun Bae, and Jun-Gyo Suh, and Yang-Seok Oh, and Moo Ho Won
January 1989, Annals of the New York Academy of Sciences,
Tae-Cheon Kang, and Sung-Jin An, and Seung-Kook Park, and In-Koo Hwang, and Jae Chun Bae, and Jun-Gyo Suh, and Yang-Seok Oh, and Moo Ho Won
February 2006, Nihon rinsho. Japanese journal of clinical medicine,
Tae-Cheon Kang, and Sung-Jin An, and Seung-Kook Park, and In-Koo Hwang, and Jae Chun Bae, and Jun-Gyo Suh, and Yang-Seok Oh, and Moo Ho Won
May 2011, BMB reports,
Tae-Cheon Kang, and Sung-Jin An, and Seung-Kook Park, and In-Koo Hwang, and Jae Chun Bae, and Jun-Gyo Suh, and Yang-Seok Oh, and Moo Ho Won
January 2000, Annual review of physiology,
Tae-Cheon Kang, and Sung-Jin An, and Seung-Kook Park, and In-Koo Hwang, and Jae Chun Bae, and Jun-Gyo Suh, and Yang-Seok Oh, and Moo Ho Won
December 2019, Nature reviews. Nephrology,
Tae-Cheon Kang, and Sung-Jin An, and Seung-Kook Park, and In-Koo Hwang, and Jae Chun Bae, and Jun-Gyo Suh, and Yang-Seok Oh, and Moo Ho Won
February 1999, The American journal of physiology,
Tae-Cheon Kang, and Sung-Jin An, and Seung-Kook Park, and In-Koo Hwang, and Jae Chun Bae, and Jun-Gyo Suh, and Yang-Seok Oh, and Moo Ho Won
May 2012, Zhongguo wei zhong bing ji jiu yi xue = Chinese critical care medicine = Zhongguo weizhongbing jijiuyixue,
Tae-Cheon Kang, and Sung-Jin An, and Seung-Kook Park, and In-Koo Hwang, and Jae Chun Bae, and Jun-Gyo Suh, and Yang-Seok Oh, and Moo Ho Won
February 2013, BMB reports,
Tae-Cheon Kang, and Sung-Jin An, and Seung-Kook Park, and In-Koo Hwang, and Jae Chun Bae, and Jun-Gyo Suh, and Yang-Seok Oh, and Moo Ho Won
April 2001, American journal of physiology. Renal physiology,
Copied contents to your clipboard!