Na-K-Cl cotransporter expression in the developing and senescent gerbil cochlea. 1998

N Sakaguchi, and J J Crouch, and C Lytle, and B A Schulte
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston 29425, USA.

Changes in the cellular expression pattern of the Na-K-Cl cotransporter (NKCC) were investigated during postnatal development and with advancing age in the gerbil cochlea. At birth, faint immunostaining for NKCC was discernable in the developing stria vascularis (StV), Reissner's membrane, interdental cells and some relatively undifferentiated cells lining the cochlear partition. Between 2 and 4 days after birth (DAB) immunostaining persisted and increased in the future interdental, inner and outer sulcus and claudius cells but then disappeared from these sites by 8 DAB. In contrast, NKCC immunoreactivity in the StV increased progressively during development and approached adult levels by 12 DAB. Immunostaining for NKCC in subpopulations of fibrocytes in the inferior portion of the spiral ligament, the suprastrial region and the spiral limbus was first detectable between 10 and 12 DAB and staining intensity reached adult levels around 16 DAB. Changes in NKCC expression with advancing age generally mimicked those previously observed for Na,K-ATPase in focal regions of atrophic lateral wall. Diminished immunostaining was first seen in the StV, presumably associated with the involution of the marginal cell's basolateral processes. Further atrophy culminated in complete loss of immunostaining in the StV and an associated down-regulation of NKCC expression in spiral ligament transport fibrocytes. The marked similarities in the developmental and age-related expression patterns of NKCC and Na,K-ATPase point to a high level of functional cooperativity between these two ion transport mediators, which together provide an efficient mechanism for generating and maintaining high K+ levels in endolymph and the endocochlear potential.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D005260 Female Females
D005849 Gerbillinae A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys. Gerbils,Jird,Meriones,Psammomys,Rats, Sand,Gerbil,Jirds,Merione,Rat, Sand,Sand Rat,Sand Rats

Related Publications

N Sakaguchi, and J J Crouch, and C Lytle, and B A Schulte
December 2002, Hearing research,
N Sakaguchi, and J J Crouch, and C Lytle, and B A Schulte
November 2002, Neuroscience research,
N Sakaguchi, and J J Crouch, and C Lytle, and B A Schulte
November 2002, Neuroscience research,
N Sakaguchi, and J J Crouch, and C Lytle, and B A Schulte
February 2011, American journal of physiology. Regulatory, integrative and comparative physiology,
N Sakaguchi, and J J Crouch, and C Lytle, and B A Schulte
January 1989, Annals of the New York Academy of Sciences,
N Sakaguchi, and J J Crouch, and C Lytle, and B A Schulte
August 1997, Brain research,
N Sakaguchi, and J J Crouch, and C Lytle, and B A Schulte
February 2006, Nihon rinsho. Japanese journal of clinical medicine,
N Sakaguchi, and J J Crouch, and C Lytle, and B A Schulte
January 2000, Annual review of physiology,
N Sakaguchi, and J J Crouch, and C Lytle, and B A Schulte
December 2019, Nature reviews. Nephrology,
N Sakaguchi, and J J Crouch, and C Lytle, and B A Schulte
February 1999, The American journal of physiology,
Copied contents to your clipboard!