Accurate nucleic acid concentrations by nuclear magnetic resonance. 2002

M J Cavaluzzi, and D J Kerwood, and P N Borer
Department of Chemistry and Graduate Program in Structural Biology, Biochemistry, and Biophysics, Syracuse University, Syracuse, NY 13244, USA.

Determination of the concentration of biochemical samples often yields values with uncertainties of 10-20% or more. This paper details a protocol for use with 500- to 600-MHz NMR spectrometers to measure approximately 1mM concentrations within +/-1-3% accuracy. With suitable precautions, all compounds have equal NMR "absorption coefficients" for protons. About 2mg of sample are needed for proteins and nucleic acids with MW=5000, although less accurate determinations could be made with smaller amounts. The technique utilizes standardized internal reference reagent compounds, cacodylic acid or 3-(trimethylsilyl)propionic-2,2,3,3-d(4) acid sodium salt. Spectra were signal-averaged using long interpulse delays so that integrals of nonexchangeable protons could be quantified relative to the reference standard. Accurate determinations require careful optimization of the homogeneity of the magnetic field and meticulous attention to sample preparation and spectral processing. The main source of error is usually the accuracy of micropipets. If sample preparation errors could be eliminated, the lower limit of accuracy with the current generation of NMR spectrometers is probably near 0.4%. However, this would require >99.5% sample purity. Methods are described to establish the concentration of the standards, and applications are illustrated with DNA mono- and oligonucleotides. Similar procedures should apply to proteins, polysaccharides, and other biomolecules, with about the same accuracy and precision.

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009696 Nucleic Acids High molecular weight polymers containing a mixture of purine and pyrimidine nucleotides chained together by ribose or deoxyribose linkages. Nucleic Acid,Acid, Nucleic,Acids, Nucleic
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D012015 Reference Standards A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy. Standard Preparations,Standards, Reference,Preparations, Standard,Standardization,Standards,Preparation, Standard,Reference Standard,Standard Preparation,Standard, Reference
D002101 Cacodylic Acid An arsenical that has been used as a dermatologic agent and as an herbicide. Cacodylate,Dimethylarsinate,Dimethylarsinic Acid,Acid, Cacodylic,Acid, Dimethylarsinic
D003838 Deoxyadenine Nucleotides Adenine nucleotides which contain deoxyribose as the sugar moiety. Deoxyadenosine Phosphates,Nucleotides, Deoxyadenine,Phosphates, Deoxyadenosine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D014297 Trimethylsilyl Compounds Organic silicon derivatives used to characterize hydroxysteroids, nucleosides, and related compounds. Trimethylsilyl esters of amino acids are used in peptide synthesis. Compounds, Trimethylsilyl

Related Publications

M J Cavaluzzi, and D J Kerwood, and P N Borer
December 1988, European journal of biochemistry,
M J Cavaluzzi, and D J Kerwood, and P N Borer
June 1964, Science (New York, N.Y.),
M J Cavaluzzi, and D J Kerwood, and P N Borer
July 1966, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M J Cavaluzzi, and D J Kerwood, and P N Borer
October 1981, Biochemistry,
M J Cavaluzzi, and D J Kerwood, and P N Borer
February 2002, Journal of the American Chemical Society,
M J Cavaluzzi, and D J Kerwood, and P N Borer
January 2023, Magnetic resonance in chemistry : MRC,
M J Cavaluzzi, and D J Kerwood, and P N Borer
February 1995, Current opinion in biotechnology,
M J Cavaluzzi, and D J Kerwood, and P N Borer
December 1973, Annals of the New York Academy of Sciences,
M J Cavaluzzi, and D J Kerwood, and P N Borer
October 2023, Analytical chemistry,
Copied contents to your clipboard!