GABAergic regulation of the central nucleus of the amygdala: implications for sleep control. 2002

Larry D Sanford, and Brian Parris, and Xiangdong Tang
Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, PO Box 1980, Norfolk, VA 23501, USA. sanforld@evms.edu

It is becoming established that the amygdala has a strong influence on arousal state, with most evidence indicating a role in the regulation of rapid eye movement sleep (REM). Electrically activating the central nucleus of the amygdala (CNA) can increase subsequent REM and enhance REM-related phenomena. However, drugs that may be inhibitory to CNA have been typically reported to reduce REM. This suggests that enhancing activity in CNA could promote REM, and that inhibiting activity in CNA could suppress REM. We reversibly inactivated CNA using the GABA(A) agonist, muscimol, or blocked GABAergic inhibition with the GABA(A) antagonist, bicuculline, and examined the effects on sleep and wakefulness. Rats (90-day-old male Sprague-Dawley) were implanted with electrodes for recording EEG and EMG. Cannulae were aimed into CNA for microinjecting muscimol (0.001, 0.3 and 1.0 microM/0.2 microl saline) or bicuculline (56 and 333 pM/0.2 microl saline). Each animal received bilateral microinjections of muscimol, bicuculine or saline alone followed by 6-h sleep recordings. Microinjections of low concentrations of muscimol into CNA produced relatively selective decreases in total REM and number of REM episodes that lasted up to 6 h. In contrast, microinjections of bicuculline into CNA produced significant increases in REM. There were no significant reductions in NREM or wakefulness. These findings demonstrate that inactivating CNA can produce a relatively selective suppression of REM. The possible role that spontaneous activity in CNA may play in REM initiation and/or maintenance is discussed.

UI MeSH Term Description Entries
D008297 Male Males
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one

Related Publications

Larry D Sanford, and Brian Parris, and Xiangdong Tang
December 2015, Neuropharmacology,
Larry D Sanford, and Brian Parris, and Xiangdong Tang
August 2010, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
Larry D Sanford, and Brian Parris, and Xiangdong Tang
July 2023, Journal of integrative neuroscience,
Larry D Sanford, and Brian Parris, and Xiangdong Tang
January 1999, The American journal of physiology,
Larry D Sanford, and Brian Parris, and Xiangdong Tang
December 1998, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
Larry D Sanford, and Brian Parris, and Xiangdong Tang
May 2020, Neuropharmacology,
Larry D Sanford, and Brian Parris, and Xiangdong Tang
January 2016, Frontiers in neural circuits,
Larry D Sanford, and Brian Parris, and Xiangdong Tang
July 1998, Brain research,
Larry D Sanford, and Brian Parris, and Xiangdong Tang
April 2017, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!