PACAP regulation of central amygdala GABAergic synapses is altered by restraint stress. 2020

F P Varodayan, and M A Minnig, and M Q Steinman, and C S Oleata, and M W Riley, and V Sabino, and M Roberto
Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA. Electronic address: varodaya@scripps.edu.

The pituitary adenylate cyclase-activating polypeptide (PACAP) system plays a central role in the brain's emotional response to psychological stress by activating cellular processes and circuits associated with threat exposure. The neuropeptide PACAP and its main receptor PAC1 are expressed in the rodent central amygdala (CeA), a brain region critical in negative emotional processing, and CeA PACAPergic signaling drives anxiogenic and stress coping behaviors. Despite this behavioral evidence, PACAP's effects on neuronal activity within the medial subdivision of the CeA (CeM, the major output nucleus for the entire amygdala complex) during basal conditions and after psychological stress remain unknown. Therefore, in the present study, male Wistar rats were subjected to either restraint stress or control conditions, and PACAPergic regulation of CeM cellular function was assessed using immunohistochemistry and whole-cell patch-clamp electrophysiology. Our results demonstrate that PACAP-38 potentiates GABA release in the CeM of naïve rats, via its actions at presynaptic PAC1. Basal PAC1 activity also enhances GABA release in an action potential-dependent manner. Notably, PACAP-38's facilitation of CeM GABA release was attenuated after a single restraint stress session, but after repeated sessions returned to the level observed in naïve animals. A single restraint session also significantly decreased PAC1 levels in the CeM, with repeated restraint sessions producing a slight recovery. Collectively our data reveal that PACAP/PAC1 signaling enhances inhibitory control of the CeM and that psychological stress can modulate this influence to potentially disinhibit downstream effector regions that mediate anxiety and stress-related behaviors. This article is part of the special issue on 'Neuropeptides'.

UI MeSH Term Description Entries
D008297 Male Males
D012149 Restraint, Physical Use of a device for the purpose of controlling movement of all or part of the body. Splinting and casting are FRACTURE FIXATION. Immobilization, Physical,Physical Restraint,Physical Immobilization,Physical Restraints,Restraints, Physical
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013315 Stress, Psychological Stress wherein emotional factors predominate. Cumulative Stress, Psychological,Emotional Stress,Individual Stressors,Life Stress,Psychological Cumulative Stress,Psychological Stress Experience,Psychological Stress Overload,Psychologically Stressful Conditions,Stress Experience, Psychological,Stress Measurement, Psychological,Stress Overload, Psychological,Stress Processes, Psychological,Stress, Emotional,Stressful Conditions, Psychological,Psychological Stress,Stress, Psychologic,Stressor, Psychological,Condition, Psychological Stressful,Condition, Psychologically Stressful,Conditions, Psychologically Stressful,Cumulative Stresses, Psychological,Experience, Psychological Stress,Individual Stressor,Life Stresses,Measurement, Psychological Stress,Overload, Psychological Stress,Psychologic Stress,Psychological Cumulative Stresses,Psychological Stress Experiences,Psychological Stress Measurement,Psychological Stress Measurements,Psychological Stress Overloads,Psychological Stress Processe,Psychological Stress Processes,Psychological Stresses,Psychological Stressful Condition,Psychological Stressful Conditions,Psychological Stressor,Psychological Stressors,Psychologically Stressful Condition,Stress Experiences, Psychological,Stress Processe, Psychological,Stress, Life,Stress, Psychological Cumulative,Stressful Condition, Psychological,Stressful Condition, Psychologically,Stressor, Individual
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051219 Pituitary Adenylate Cyclase-Activating Polypeptide A multi-function neuropeptide that acts throughout the body by elevating intracellular cyclic AMP level via its interaction with PACAP RECEPTORS and VASOACTIVE INTESTINAL PEPTIDE RECEPTOR. Although first isolated from hypothalamic extracts and named for its action on the pituitary, it is widely distributed in the central and peripheral nervous systems. PACAP is important in the control of endocrine and homeostatic processes, such as secretion of pituitary and gut hormones and food intake. PACAP,PACAP-27,PACAP-38,PACAP27,PACAP38,Pituitary Adenylate Cyclase Activating Polypeptide,Pituitary Adenylate Cyclase Activating Polypeptide 27,Pituitary Adenylate Cyclase Activating Polypeptide 38
D051237 Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I A pituitary adenylate cyclase-activating peptide receptor subtype that is found in the HYPOTHALAMUS; BRAIN STEM; PITUITARY GLAND; ADRENAL GLAND; PANCREAS; and TESTES and has a high affinity only for PACAP. PACAP Receptors, Type I,Pituitary Adenylate Cyclase-Activating Peptide Receptor Type I,PAC1 Receptor,PACAP Type I Receptor,PACAPR-1 Protein,PACAPR 1 Protein,Pituitary Adenylate Cyclase Activating Peptide Receptor Type I
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

F P Varodayan, and M A Minnig, and M Q Steinman, and C S Oleata, and M W Riley, and V Sabino, and M Roberto
December 2018, Neuroscience bulletin,
F P Varodayan, and M A Minnig, and M Q Steinman, and C S Oleata, and M W Riley, and V Sabino, and M Roberto
January 2005, The European journal of neuroscience,
F P Varodayan, and M A Minnig, and M Q Steinman, and C S Oleata, and M W Riley, and V Sabino, and M Roberto
July 2023, Neurobiology of stress,
F P Varodayan, and M A Minnig, and M Q Steinman, and C S Oleata, and M W Riley, and V Sabino, and M Roberto
January 2011, Frontiers in neuroscience,
F P Varodayan, and M A Minnig, and M Q Steinman, and C S Oleata, and M W Riley, and V Sabino, and M Roberto
July 2016, Addiction biology,
F P Varodayan, and M A Minnig, and M Q Steinman, and C S Oleata, and M W Riley, and V Sabino, and M Roberto
February 2013, Neuroscience,
F P Varodayan, and M A Minnig, and M Q Steinman, and C S Oleata, and M W Riley, and V Sabino, and M Roberto
November 2002, Brain research,
F P Varodayan, and M A Minnig, and M Q Steinman, and C S Oleata, and M W Riley, and V Sabino, and M Roberto
November 2018, Alcohol and alcoholism (Oxford, Oxfordshire),
F P Varodayan, and M A Minnig, and M Q Steinman, and C S Oleata, and M W Riley, and V Sabino, and M Roberto
December 2019, The Journal of neuroscience : the official journal of the Society for Neuroscience,
F P Varodayan, and M A Minnig, and M Q Steinman, and C S Oleata, and M W Riley, and V Sabino, and M Roberto
December 1983, Neuropharmacology,
Copied contents to your clipboard!