Activation of mitogen-activated protein kinases in experimental cerebral ischemia. 2002

F Lennmyr, and S Karlsson, and P Gerwins, and K A Ata, and A Terént
Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden. fredrik.lennmyr@medsci.uu.se

OBJECTIVE Mitogen-activated protein kinases (MAPK) regulate cell survival and differentiation. The aim of the present study is to investigate the activation pattern of different MAPKs [extracellular signal-regulated kinase (ERK), c-jun-N-terminal kinase (JNK) and p38] after cerebral ischemia. METHODS Rats were subjected to cerebral ischemia using a model for transient (2 h) and permanent middle cerebral artery occlusion (MCAO). The rats were allowed 6 h to 1 week of survival before immunohistochemical evaluation with phospho-specific antibodies, recognizing activated MAPKs. RESULTS ERK was activated in ipsilateral blood vessels, neurons and glia, but also in contralateral vessels. JNK activation was absent in neurons but appeared in arterial blood vessels and glia at the lesion side. Active p38 was observed in macrophages in maturing infarcts. CONCLUSIONS ERK and JNK may participate in the angiogenic response to cerebral ischemia. ERK, but not JNK, was activated in neurons, possibly indicating a pathophysiologic role. Active p38 might be involved in the inflammatory reaction.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D002550 Cerebral Veins Veins draining the cerebrum. Basal Vein,Pial Vein,Sylvian Vein,Thalamostriate Vein,Vein of Galen,Terminal Vein,Basal Veins,Cerebral Vein,Galen Vein,Pial Veins,Terminal Veins,Thalamostriate Veins,Vein, Basal,Vein, Cerebral,Vein, Pial,Vein, Sylvian,Vein, Terminal,Vein, Thalamostriate,Veins, Basal,Veins, Cerebral,Veins, Pial,Veins, Terminal,Veins, Thalamostriate
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

F Lennmyr, and S Karlsson, and P Gerwins, and K A Ata, and A Terént
February 2001, Molecular neurobiology,
F Lennmyr, and S Karlsson, and P Gerwins, and K A Ata, and A Terént
July 2003, Journal of neuroimmunology,
F Lennmyr, and S Karlsson, and P Gerwins, and K A Ata, and A Terént
February 2000, Journal of the American Society of Nephrology : JASN,
F Lennmyr, and S Karlsson, and P Gerwins, and K A Ata, and A Terént
September 1998, Kidney international. Supplement,
F Lennmyr, and S Karlsson, and P Gerwins, and K A Ata, and A Terént
December 2003, Investigative ophthalmology & visual science,
F Lennmyr, and S Karlsson, and P Gerwins, and K A Ata, and A Terént
June 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
F Lennmyr, and S Karlsson, and P Gerwins, and K A Ata, and A Terént
May 1996, Journal of neurochemistry,
F Lennmyr, and S Karlsson, and P Gerwins, and K A Ata, and A Terént
June 1999, Journal of molecular and cellular cardiology,
F Lennmyr, and S Karlsson, and P Gerwins, and K A Ata, and A Terént
September 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
F Lennmyr, and S Karlsson, and P Gerwins, and K A Ata, and A Terént
May 2004, Molecular pharmacology,
Copied contents to your clipboard!