[The effect of basic fibroblast growth factor on myofibroblasts and its significance on wound healing]. 2002

Biao Cheng, and Xiaobing Fu, and Zhiyong Sheng, and Xiaoman Gu, and Tongzhu Sun, and Xiaoqing Sun
Burn Institute, 304th Hospital of People's Liberation Army, Beijing 100037, China.

OBJECTIVE To observe the effect of basic fibroblast growth factor (bFGF) on the outcome of myofibroblasts in burn wounds, and to further explore the mechanism of bFGF on wound healing. METHODS Seventy-two Wistar rats were anaesthetized and put into hot water at the temperature of 98 degrees C with their back hair cut so as to cause full-thickness scald injury with an area of 30% of the total body surface. Then the rats were randomly divided into two groups of 36 mice: pure thermal injury group (administered with sterilization and dressing every other day for three times) and bFGF treatment group (administered locally with bFGF every other day in addition to the routine dressing). Three hours, six hours, one day, three days, seven days, and fourteen days after scalding samples of skin wound was taken, six rats for each time-point. Six rats were put into water at the temperature of 37 degrees C as controls and their skin samples were taken 8s after. In situ hybridization and immunohistochemical techniques were employed to detect the expression of caspase mRNA and proteins. alpha-smooth muscle actin (ASMA), and transforming growth factor-beta1 (TGF-beta1) were detected by immunohistochemical staining at different time points after scalding. RESULTS No obvious difference of ASMA expression in dermal tissues was seen at the early stage of injury. The number of cells with positive ASMA expression began to increase 1 approximately 3 days after and reached the peak by the 7th day after scalding, and then decreased gradually. The ASMA expression in bFGF group was remarkably increased by the 7th day, significantly higher than that in the pure thermal injury group (P < 0.05). By the 14th day, the ASMA expression in the bFGF group was still significantly higher than that in pure thermal injury group (P < 0.01), however, it was much lower than that in the bFGF group by the 7th day. By the 14th days after scald injury. The number of TGF-beta1 positive cells began to increase since the 3rd hour after scald injury and began to decrease by the 14th day in both experimental groups. However, the TGF-beta1 expression in bFGF group was stronger than that in pure thermal injury group. The expressions of caspase-3 mRNA and protein in bFGF group changed in the same way as in the simple injured group. Three hours after injury, the expression of caspase-3 mRNA was lower in bFGF group than in pure injury group (P < 0.05). Then the expression decreased till the 3rd day. Six hours after injury, no difference in the expression of caspase-3 mRNA was found between the two experimental groups. The expression of caspase-3 reached its second peak by the 7th day and then decreased again. However, the first expression peak of the bFGF group was lower than that of the pure thermal injury group, however, the second peak of the bFGF group was higher. CONCLUSIONS Myofibroblasts may play a critical role in wound closure and healing. bFGF treatment may increase the expression of TGF-beta1 and have a potential synergistic effect with other growth factors to stimulate the apoptosis of myofibroblasts during wound healing.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D002056 Burns Injuries to tissues caused by contact with heat, steam, chemicals (BURNS, CHEMICAL), electricity (BURNS, ELECTRIC), or the like. Burn
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014945 Wound Healing Restoration of integrity to traumatized tissue. Healing, Wound,Healings, Wound,Wound Healings
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic

Related Publications

Biao Cheng, and Xiaobing Fu, and Zhiyong Sheng, and Xiaoman Gu, and Tongzhu Sun, and Xiaoqing Sun
May 2005, Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery,
Biao Cheng, and Xiaobing Fu, and Zhiyong Sheng, and Xiaoman Gu, and Tongzhu Sun, and Xiaoqing Sun
May 1996, Arzneimittel-Forschung,
Biao Cheng, and Xiaobing Fu, and Zhiyong Sheng, and Xiaoman Gu, and Tongzhu Sun, and Xiaoqing Sun
March 2013, Advances in wound care,
Biao Cheng, and Xiaobing Fu, and Zhiyong Sheng, and Xiaoman Gu, and Tongzhu Sun, and Xiaoqing Sun
July 1988, The Journal of surgical research,
Biao Cheng, and Xiaobing Fu, and Zhiyong Sheng, and Xiaoman Gu, and Tongzhu Sun, and Xiaoqing Sun
September 1999, Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery,
Biao Cheng, and Xiaobing Fu, and Zhiyong Sheng, and Xiaoman Gu, and Tongzhu Sun, and Xiaoqing Sun
July 2003, Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery,
Biao Cheng, and Xiaobing Fu, and Zhiyong Sheng, and Xiaoman Gu, and Tongzhu Sun, and Xiaoqing Sun
September 2002, Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery,
Biao Cheng, and Xiaobing Fu, and Zhiyong Sheng, and Xiaoman Gu, and Tongzhu Sun, and Xiaoqing Sun
December 1988, Trends in pharmacological sciences,
Biao Cheng, and Xiaobing Fu, and Zhiyong Sheng, and Xiaoman Gu, and Tongzhu Sun, and Xiaoqing Sun
January 1991, Annals of the New York Academy of Sciences,
Biao Cheng, and Xiaobing Fu, and Zhiyong Sheng, and Xiaoman Gu, and Tongzhu Sun, and Xiaoqing Sun
December 1990, The Journal of trauma,
Copied contents to your clipboard!