Plasmic degradation of human fibrinogen. IV. Identification of subunit chain remnants in fragment Y. 1975

M Furlan, and T Seelich, and E A Beck

A method is presented for detection of cross-linking acceptor sites on fibrinogen chains, using monodansyl-cadaverine labeling in the presence of activated fibrin stabilizing factor, and polyacrylamide electrophoresis in the presence of sodium dodecyl sulfate. Fluorescent gamma-chain monomers and dimers were produced at a considerably faster rate than the labeled alpha-chain derivative. Purified fragments X, Y and D were prepared all from the same plasmic digest of fibrinogen. Following incubation with fibrin stabilizing factor, thrombin and monodansyl-cadaverine, they were reduced with beta-mercaptoethanol and examined by sodium dodecyl sulfate/acrylamide electrophoresis. Three gamma-chains (mol. wts 49 000, 42 000 and 39 000) had reacted with dansyl-cadaverine while no alpha-chain remnant took up the label. Additional protein and carbohydrate staining further facilitated identification of the individual subunit chains. At least three critical peptide bonds, located on alpha, beta- and gamma-chain remnants, must be broken during conversion of fragment Y into D and E. Sequential cleavage results in heterogeneous appearance of reduced subunit chains. As a consequence, there exist several molecular entities of fragment Y, all of which may have the same molecular weight though they represent various products of progressive plasmic digestion. Our results are compatible with the model of asymmetric degradation of fibrinogen, according to which fragment X produces 1 mol of fragment E e and 2 mol of the monomeric fragment D.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D005341 Fibrinolysin A product of the lysis of plasminogen (profibrinolysin) by PLASMINOGEN activators. It is composed of two polypeptide chains, light (B) and heavy (A), with a molecular weight of 75,000. It is the major proteolytic enzyme involved in blood clot retraction or the lysis of fibrin and quickly inactivated by antiplasmins. Plasmin,Fibrogammin,Glu-Plasmin,Protease F,Thrombolysin,Glu Plasmin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

M Furlan, and T Seelich, and E A Beck
May 1973, Biochimica et biophysica acta,
M Furlan, and T Seelich, and E A Beck
January 1971, Scandinavian journal of haematology. Supplementum,
M Furlan, and T Seelich, and E A Beck
April 1974, The Journal of biological chemistry,
M Furlan, and T Seelich, and E A Beck
May 1972, Biochimica et biophysica acta,
M Furlan, and T Seelich, and E A Beck
November 1976, The Journal of laboratory and clinical medicine,
M Furlan, and T Seelich, and E A Beck
November 1974, Pathologie-biologie,
M Furlan, and T Seelich, and E A Beck
February 1977, Thrombosis and haemostasis,
M Furlan, and T Seelich, and E A Beck
April 1977, Thrombosis and haemostasis,
M Furlan, and T Seelich, and E A Beck
April 1976, Thrombosis research,
Copied contents to your clipboard!