Individual differences in cocaine-induced locomotor sensitization in low and high cocaine locomotor-responding rats are associated with differential inhibition of dopamine clearance in nucleus accumbens. 2003

Jilla Sabeti, and Greg A Gerhardt, and Nancy R Zahniser
Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado, USA. sabetij@scripps.edu

Behavioral sensitization to cocaine reflects neuroadaptive changes that intensify drug effects. However, repeated cocaine administration does not induce behavioral sensitization in all male Sprague-Dawley rats. Because cocaine inhibits the dopamine (DA) transporter (DAT), we investigated whether altered DAT function contributes to these individual differences. Freely moving rats had electrochemical microelectrode/microcannulae assemblies chronically implanted in the nucleus accumbens so that exogenous DA clearance signals were recorded simultaneous with behavior. The peak DA signal amplitude (A(max)) and efficiency of clearance (k) were used as indices of in vivo DAT function. Low and high cocaine responders (LCRs and HCRs, respectively) were identified based on their locomotor responsiveness to an initial injection of cocaine (10 mg/kg i.p.). Consistent with DAT inhibition, cocaine elevated A(max) and reduced k in HCRs, but not in LCRs. The same dose of cocaine was administered for six additional days and after a 7-day withdrawal. Baseline behavioral and dopamine clearance indices were unaltered by repeated cocaine or after withdrawal. Only LCRs expressed cocaine-induced sensitized locomotor activation, and this was accompanied by cocaine-induced elevations in A(max) and reductions in k. These sensitized responses to cocaine persisted in LCRs after withdrawal. In contrast, neither locomotor nor electrochemical responses were altered by repeated saline administration or a saline challenge after repeated cocaine administration, suggesting that conditioning did not significantly contribute. Our results suggest that increased DAT inhibition by cocaine is associated with locomotor sensitization and that DAT serves as a common substrate for mediating both the initial and sensitized locomotor responsiveness to cocaine.

UI MeSH Term Description Entries
D007206 Individuality Those psychological characteristics which differentiate individuals from one another. Individual Differences,Difference, Individual,Differences, Individual,Individual Difference
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Jilla Sabeti, and Greg A Gerhardt, and Nancy R Zahniser
November 2015, NMR in biomedicine,
Jilla Sabeti, and Greg A Gerhardt, and Nancy R Zahniser
February 2020, Behavioural brain research,
Jilla Sabeti, and Greg A Gerhardt, and Nancy R Zahniser
February 2009, Pharmacology, biochemistry, and behavior,
Jilla Sabeti, and Greg A Gerhardt, and Nancy R Zahniser
January 2008, The European journal of neuroscience,
Jilla Sabeti, and Greg A Gerhardt, and Nancy R Zahniser
December 2003, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Jilla Sabeti, and Greg A Gerhardt, and Nancy R Zahniser
May 1995, Synapse (New York, N.Y.),
Jilla Sabeti, and Greg A Gerhardt, and Nancy R Zahniser
December 1998, The European journal of neuroscience,
Jilla Sabeti, and Greg A Gerhardt, and Nancy R Zahniser
June 2000, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!