Polyamines and glutamate decarboxylase-based acid resistance in Escherichia coli. 2003

Il Lae Jung, and In Gyu Kim
Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P. O. Box 105, Yusong, Taejon 305-600, Korea.

The expression of gadA and gadB, which encode two glutamate decarboxylases (GADs) of Escherichia coli, is induced by an acidic environment and participate in acid resistance. In this study, we constructed a polyamine-deficient mutant and investigated the role of polyamines in acid resistance. The expression of gadA and gadB was shown to be dependent on polyamines. For that reason, the polyamine-deficient mutant was completely devoid of GAD activity and was very susceptible to low pH if large amounts of polyamines were not provided. We also showed that the polyamine-deficient mutant contained higher cAMP levels than the isogenic polyamine-proficient wild type, and cAMP negatively regulated the expression of gadA and gadB. Therefore, introduction of the cya (encoding adenylate cyclase) mutation allele into the polyamine-deficient mutant resulted in the increment of GAD activity and thus restored the reduced acid resistance of the mutant. The positive regulators, H-NS (histone-like protein, encoded by the hns gene) and RpoS (alternative RNA polymerase sigma subunit, encoded by rpoS gene), also significantly governed the expression of gadA and gadB, respectively. However, polyamines did not regulate either the intracellular H-NS level or rpoS expression under these culture conditions. These results strongly suggest that there are at least two different regulatory systems in acid resistance, one is positive regulation via a H-NS/RpoS system and the other is negative regulation via a polyamine/cAMP system.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D024881 Drug Resistance, Bacterial The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance, Bacterial,Antibacterial Drug Resistance

Related Publications

Il Lae Jung, and In Gyu Kim
September 2003, Molecular microbiology,
Il Lae Jung, and In Gyu Kim
April 1967, Journal of bacteriology,
Il Lae Jung, and In Gyu Kim
July 1996, Journal of bacteriology,
Il Lae Jung, and In Gyu Kim
January 1970, Mikrobiolohichnyi zhurnal,
Il Lae Jung, and In Gyu Kim
October 1968, Biochimica et biophysica acta,
Il Lae Jung, and In Gyu Kim
January 1970, Biochemistry,
Il Lae Jung, and In Gyu Kim
February 1995, Applied and environmental microbiology,
Il Lae Jung, and In Gyu Kim
December 1993, Applied and environmental microbiology,
Copied contents to your clipboard!