A glutamate-dependent acid resistance gene in Escherichia coli. 1996

B M Hersh, and F T Farooq, and D N Barstad, and D L Blankenhorn, and J L Slonczewski
Department of Biology, Kenyon College, Gambier, Ohio 43022, USA.

Stationary-phase cultures of Escherichia coli can survive several hours or exposure to extreme acid (pH 2 to 3), a level well below the pH range for growth (pH 4.5 to 9). To identify the genes needed for survival in extreme acid, a microliter screening procedure was devised. Colonies from a Tn10 transposon pool in E. coli MC4100 were inoculated into buffered Luria broth, pH 7.0, in microtiter wells, grown overnight, and then diluted in Luria broth, pH 2.5, at 37 degrees C for 2 h. From 3,000 isolates screened, 3 Tet(r) strains were identified as extremely acid sensitive (<0.1% survival at pH 2.5 for 2 h). Flanking sequences of the Tn10 inserts were amplified by inverse PCR. The sequences encoded a hydrophobic partial peptide of 88 residues. A random-primer-generated probe hybridized to Kohara clones 279 and 280 at 32 min (33.7 min on the revised genomic map EcoMap7) near gadB (encoding glutamate decarboxylase). The gene was designated xasA for extreme acid sensitive. xasA::Tn10 strains grown at pH 7 to 8 showed 100-fold-less survival in acid than the parent strain. Growth in mild acid (pH 5 to 6) restored acid resistance; anaerobiosis was not required, as it is for acid resistance in rpoS strains. xasA::Tn10 eliminated enhancement of acid resistance by glutamic acid. xasA was found to be a homolog of gadC recently sequenced in Shigella flexneri, in which it appears to encode a permease for the decarboxylated product of GadB. These results suggest that GadC (XasA) participates in a glutamate decarboxylase alkalinization cycle to protect E. coli from cytoplasmic acidification. The role of the glutamate cycle is particularly important for cultures grown at neutral pH before exposure to extreme acid.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000143 Acids Chemical compounds which yield hydrogen ions or protons when dissolved in water, whose hydrogen can be replaced by metals or basic radicals, or which react with bases to form salts and water (neutralization). An extension of the term includes substances dissolved in media other than water. (Grant & Hackh's Chemical Dictionary, 5th ed) Acid
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum

Related Publications

B M Hersh, and F T Farooq, and D N Barstad, and D L Blankenhorn, and J L Slonczewski
September 2003, Molecular microbiology,
B M Hersh, and F T Farooq, and D N Barstad, and D L Blankenhorn, and J L Slonczewski
October 2003, FEMS microbiology letters,
B M Hersh, and F T Farooq, and D N Barstad, and D L Blankenhorn, and J L Slonczewski
June 2003, The Journal of biological chemistry,
B M Hersh, and F T Farooq, and D N Barstad, and D L Blankenhorn, and J L Slonczewski
November 2004, Molecular microbiology,
B M Hersh, and F T Farooq, and D N Barstad, and D L Blankenhorn, and J L Slonczewski
January 2007, Bioscience, biotechnology, and biochemistry,
B M Hersh, and F T Farooq, and D N Barstad, and D L Blankenhorn, and J L Slonczewski
November 2004, Journal of bacteriology,
B M Hersh, and F T Farooq, and D N Barstad, and D L Blankenhorn, and J L Slonczewski
January 2004, Journal of applied microbiology,
B M Hersh, and F T Farooq, and D N Barstad, and D L Blankenhorn, and J L Slonczewski
September 2004, Journal of bacteriology,
B M Hersh, and F T Farooq, and D N Barstad, and D L Blankenhorn, and J L Slonczewski
March 2011, Journal of bacteriology,
B M Hersh, and F T Farooq, and D N Barstad, and D L Blankenhorn, and J L Slonczewski
November 2013, The Journal of biological chemistry,
Copied contents to your clipboard!