Stimulation of L-type Ca2+ channels by inositol pentakis- and hexakisphosphates in rat vascular smooth muscle cells. 2003

J F Quignard, and L Rakotoarisoa, and J Mironneau, and C Mironneau
Laboratoire de Signalisation et Interactions Cellulaires, CNRS UMR 5017, UFR Sciences Pharmaceutiques, Université Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France. jean-francois.quignard@umr5017.u-bordeaux2.fr

The electrophysiological effects of D-myo-inositol 1,3,4,5,6-pentakisphosphate (InsP5) and D-myo-inositol hexakisphosphate (InsP6), which represent the main cellular inositol polyphosphates, were studied on L-type Ca2+ channels in single myocytes of rat portal vein. Intracellular infusion of InsP5 (up to 50 micro M) or 10 micro M InsP6 had no action on Ba2+ current, whereas 50 micro M InsP6 or 10 micro M InsP5 plus 10 micro M InsP6 (InsP5,6) stimulated the inward current. The stimulatory effect of InsP5,6 was also obtained in external Ca2+-containing solution. The stimulated Ba2+ current retained the properties of L-type Ba2+ current and was oxodipine sensitive. PKC inhibitors Ro 32-0432 (up to 500 nM), GF109203X (5 micro M) or calphostin C (100 nM) abolished the InsP5,6-induced stimulation. Neither the PKA inhibitor H89 (1 micro M) nor the protein phosphatase inhibitors okadaic acid (500 nM) or cypermethrin (1 micro M) prevented or mimicked the InsP5,6-induced stimulation of Ba2+ current. However, InsP5 or InsP6 could mimic some effects of protein phosphatase inhibitor so as to extend after washing-out forskolin the stimulatory effects of the adenylyl cyclase activator on Ba2+ current. These results indicate that InsP5 and InsP6 may act as intracellular messengers in modulating L-type Ca2+ channel activity and so could be implicated in mediator-induced contractions of vascular smooth muscle cells.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010744 Phosphoric Monoester Hydrolases A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. Phosphatase,Phosphatases,Phosphohydrolase,Phosphohydrolases,Phosphomonoesterase,Phosphomonoesterases,Phosphoric Monoester Hydrolase,Hydrolase, Phosphoric Monoester,Hydrolases, Phosphoric Monoester,Monoester Hydrolase, Phosphoric
D010833 Phytic Acid Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. Inositol Hexaphosphate,Phytin,Calcium Phytate,Inositol Hexakisphosphate,Phytate,Sodium Phytate,Acid, Phytic,Hexakisphosphate, Inositol,Hexaphosphate, Inositol,Phytate, Calcium,Phytate, Sodium
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme

Related Publications

J F Quignard, and L Rakotoarisoa, and J Mironneau, and C Mironneau
September 1993, Brain research,
J F Quignard, and L Rakotoarisoa, and J Mironneau, and C Mironneau
December 1997, The Journal of biological chemistry,
J F Quignard, and L Rakotoarisoa, and J Mironneau, and C Mironneau
February 1995, The American journal of physiology,
J F Quignard, and L Rakotoarisoa, and J Mironneau, and C Mironneau
January 1996, Journal of vascular research,
J F Quignard, and L Rakotoarisoa, and J Mironneau, and C Mironneau
January 1992, Japanese journal of pharmacology,
J F Quignard, and L Rakotoarisoa, and J Mironneau, and C Mironneau
May 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
J F Quignard, and L Rakotoarisoa, and J Mironneau, and C Mironneau
June 1992, Journal of neurochemistry,
J F Quignard, and L Rakotoarisoa, and J Mironneau, and C Mironneau
January 1995, Journal of molecular and cellular cardiology,
J F Quignard, and L Rakotoarisoa, and J Mironneau, and C Mironneau
August 2006, Cell calcium,
J F Quignard, and L Rakotoarisoa, and J Mironneau, and C Mironneau
June 2003, Biochemical and biophysical research communications,
Copied contents to your clipboard!