Multilocus sequence typing (MLST) of Escherichia coli O78 strains. 2003

Roni S Adiri, and Uri Gophna, and Eliora Z Ron
Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.

Strains of Escherichia coli serotype O78 are associated with many diseases, including invasive infections, in humans and farm animals. The clonal relationship between strains from different hosts is therefore important for assessing the risk of zoonotic infections. Here we propose a multilocus sequence typing scheme for E. coli, based on six housekeeping genes. Preliminary, but significant, results indicate that clonal division in E. coli O78 strains is host independent, and closely related clones reside in different hosts. There was a positive correlation between virulence and clonal origin.

UI MeSH Term Description Entries
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D004927 Escherichia coli Infections Infections with bacteria of the species ESCHERICHIA COLI. E coli Infections,E. coli Infection,Infections, E coli,Infections, Escherichia coli,E coli Infection,E. coli Infections,Escherichia coli Infection,Infection, E coli,Infection, E. coli,Infection, Escherichia coli
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000217 Acyltransferases Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3. Acyltransferase
D000263 Adenylate Kinase An enzyme that catalyzes the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate. EC 2.7.4.3. Myokinase,AMP Kinase,ATP-AMP Phosphotransferase,ATP-AMP Transphosphorylase,Adenylokinase,ATP AMP Phosphotransferase,ATP AMP Transphosphorylase,Kinase, AMP,Kinase, Adenylate,Phosphotransferase, ATP-AMP,Transphosphorylase, ATP-AMP

Related Publications

Roni S Adiri, and Uri Gophna, and Eliora Z Ron
January 2008, Bacteriologia, virusologia, parazitologia, epidemiologia (Bucharest, Romania : 1990),
Roni S Adiri, and Uri Gophna, and Eliora Z Ron
December 2013, Rinsho byori. The Japanese journal of clinical pathology,
Roni S Adiri, and Uri Gophna, and Eliora Z Ron
November 2010, The Journal of veterinary medical science,
Roni S Adiri, and Uri Gophna, and Eliora Z Ron
January 2019, Methods in molecular biology (Clifton, N.J.),
Roni S Adiri, and Uri Gophna, and Eliora Z Ron
January 2014, Methods in molecular biology (Clifton, N.J.),
Roni S Adiri, and Uri Gophna, and Eliora Z Ron
January 2007, Methods in molecular biology (Clifton, N.J.),
Roni S Adiri, and Uri Gophna, and Eliora Z Ron
January 2014, Methods in molecular biology (Clifton, N.J.),
Roni S Adiri, and Uri Gophna, and Eliora Z Ron
January 2017, Methods in molecular biology (Clifton, N.J.),
Roni S Adiri, and Uri Gophna, and Eliora Z Ron
January 2015, Methods in molecular biology (Clifton, N.J.),
Roni S Adiri, and Uri Gophna, and Eliora Z Ron
January 2013, Epidemiology and infection,
Copied contents to your clipboard!