Comparison of norfluoxetine enantiomers as serotonin uptake inhibitors in vivo. 1992

R W Fuller, and H D Snoddy, and J H Krushinski, and D W Robertson
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285.

Norfluoxetine, the N-desmethyl metabolite of fluoxetine, has been reported to resemble fluoxetine in being a potent and selective inhibitor of the serotonin uptake carrier. The enantiomers of norfluoxetine have now been compared as serotonin uptake inhibitors in vivo, based on their antagonism of p-chloroamphetamine-induced depletion of serotonin in brain and their lowering of concentrations of the metabolite of serotonin, 5-hydroxyindoleacetic acid (5-HIAA) in brain. In rats, S-norfluoxetine (ED50 3.8 mg/kg) was more potent than R-norfluoxetine (ED50 > 20 mg/kg) in blocking the depletion of serotonin by p-chloroamphetamine after intraperitoneal administration. The S enantiomer decreased concentrations of 5-HIAA in whole brain after doses of 2.5-20 mg/kg, whereas the R enantiomer did not. The concentrations of both enantiomers in brain increased in proportion to dose and the R enantiomer disappeared from the brain at a slightly slower rate than the S enantiomer. The relative inability of the R enantiomer to block the uptake of serotonin was therefore not a result of smaller concentrations of drug in the brain. In mice, S-norfluoxetine was also more potent than R-norfluoxetine in blocking depletion of serotonin by p-chloroamphetamine (ED50 values 0.82 and 8.3 mg/kg, respectively). Thus, in contrast to the relatively similar potencies of the enantiomers of fluoxetine in blocking the uptake of serotonin, the enantiomers of norfluoxetine have markedly different potencies as inhibitors of the uptake of serotonin.

UI MeSH Term Description Entries
D008297 Male Males
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D010133 p-Chloroamphetamine Chlorinated analog of AMPHETAMINE. Potent neurotoxin that causes release and eventually depletion of serotonin in the CNS. It is used as a research tool. p-Chloramphetamine,para-Chloroamphetamine,LY-121860,Ly-123362,Parachloroamphetamine,LY 121860,LY121860,Ly 123362,Ly123362,p Chloramphetamine,p Chloroamphetamine,para Chloroamphetamine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005473 Fluoxetine The first highly specific serotonin uptake inhibitor. It is used as an antidepressant and often has a more acceptable side-effects profile than traditional antidepressants. Fluoxetin,Fluoxetine Hydrochloride,Lilly-110140,N-Methyl-gamma-(4-(trifluoromethyl)phenoxy)benzenepropanamine,Prozac,Sarafem,Lilly 110140,Lilly110140
D006897 Hydroxyindoleacetic Acid 5-HIAA,5-Hydroxy-3-Indoleacetic Acid,5-Hydroxyindolamine Acetic Acid,5 Hydroxy 3 Indoleacetic Acid,5 Hydroxyindolamine Acetic Acid,Acetic Acid, 5-Hydroxyindolamine,Acid, 5-Hydroxy-3-Indoleacetic,Acid, 5-Hydroxyindolamine Acetic,Acid, Hydroxyindoleacetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

R W Fuller, and H D Snoddy, and J H Krushinski, and D W Robertson
June 1993, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
R W Fuller, and H D Snoddy, and J H Krushinski, and D W Robertson
December 1992, The Journal of pharmacy and pharmacology,
R W Fuller, and H D Snoddy, and J H Krushinski, and D W Robertson
January 1990, Acta pharmaceutica Nordica,
R W Fuller, and H D Snoddy, and J H Krushinski, and D W Robertson
August 1991, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
R W Fuller, and H D Snoddy, and J H Krushinski, and D W Robertson
January 1995, Revista de neurologia,
R W Fuller, and H D Snoddy, and J H Krushinski, and D W Robertson
January 1985, Clinical neuropharmacology,
R W Fuller, and H D Snoddy, and J H Krushinski, and D W Robertson
August 1998, Lakartidningen,
R W Fuller, and H D Snoddy, and J H Krushinski, and D W Robertson
March 2009, Bioorganic & medicinal chemistry,
R W Fuller, and H D Snoddy, and J H Krushinski, and D W Robertson
February 2004, Drug metabolism and disposition: the biological fate of chemicals,
R W Fuller, and H D Snoddy, and J H Krushinski, and D W Robertson
September 2007, Nederlands tijdschrift voor tandheelkunde,
Copied contents to your clipboard!