Structure of the zebrafish fasciclin I-related extracellular matrix protein (betaig-h3) and its characteristic expression during embryogenesis. 2003

Yoshikazu Hirate, and Hitoshi Okamoto, and Kyo Yamasu
Department of Regulation Biology, Faculty of Science, Saitama University, 338-8570 Saitama, Japan.

betaig-h3, which is structurally related to the insect fasciclin I, is assumed to act as a cell adhesion molecule through binding to cell-surface integrins. In this study, we obtained cDNA clones for the zebrafish orthologue of betaig-h3 and examined the expression of the gene (betaig-h3) in zebrafish embryos using in situ hybridization. Expression is first seen at the bud stage in the presomitic mesoderm. Throughout the somitogenesis stage, betaig-h3 is expressed in all the segmented somites, as well as in the presomitic mesoderm (S0 and S-I). High expression is observed in the dorsolateral part of the somite until the mid-somitogenesis stage. At late somitogenesis stages, the betaig-h3 expression in the dorsolateral somite fades away, while expression is upregulated in the ventromedial part of the somite that corresponds to the sclerotome. In embryos after completion of somitogenesis and fry after hatching, betaig-h3 continues to be expressed in the sclerotome. In addition, new expression starts in the mesenchyme cells in the head, pharyngeal arches, and pectoral fins. In the embryonic brain, expression is observed along the anterior and postoptic commissures, as well as along the optic nerve.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015027 Zebrafish An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. Zebrafish is a model organism for drug assay and cancer research. Brachydanio rerio,Danio rerio,B. rerio,D. rerio,Zebra Fish,Zebra Fishes,Zebra danio,Zebrafishes,D. rerios,Fishes, Zebra,Zebra danios,danio, Zebra
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk
D016326 Extracellular Matrix Proteins Macromolecular organic compounds that contain carbon, hydrogen, oxygen, nitrogen, and usually, sulfur. These macromolecules (proteins) form an intricate meshwork in which cells are embedded to construct tissues. Variations in the relative types of macromolecules and their organization determine the type of extracellular matrix, each adapted to the functional requirements of the tissue. The two main classes of macromolecules that form the extracellular matrix are: glycosaminoglycans, usually linked to proteins (proteoglycans), and fibrous proteins (e.g., COLLAGEN; ELASTIN; FIBRONECTINS; and LAMININ). Extracellular Matrix Protein,Matrix Protein, Extracellular,Matrix Proteins, Extracellular,Protein, Extracellular Matrix,Proteins, Extracellular Matrix
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations

Related Publications

Yoshikazu Hirate, and Hitoshi Okamoto, and Kyo Yamasu
April 2001, Scandinavian journal of immunology,
Yoshikazu Hirate, and Hitoshi Okamoto, and Kyo Yamasu
July 2003, Cell and tissue research,
Yoshikazu Hirate, and Hitoshi Okamoto, and Kyo Yamasu
February 2008, Genes & development,
Yoshikazu Hirate, and Hitoshi Okamoto, and Kyo Yamasu
March 2000, American journal of respiratory cell and molecular biology,
Yoshikazu Hirate, and Hitoshi Okamoto, and Kyo Yamasu
July 1999, Development genes and evolution,
Yoshikazu Hirate, and Hitoshi Okamoto, and Kyo Yamasu
January 2007, The international journal of biochemistry & cell biology,
Yoshikazu Hirate, and Hitoshi Okamoto, and Kyo Yamasu
September 1992, Development (Cambridge, England),
Yoshikazu Hirate, and Hitoshi Okamoto, and Kyo Yamasu
August 2003, Mechanisms of development,
Yoshikazu Hirate, and Hitoshi Okamoto, and Kyo Yamasu
August 2008, Experimental & molecular medicine,
Copied contents to your clipboard!