Expression of betaig-h3 by human bronchial smooth muscle cells: localization To the extracellular matrix and nucleus. 2000

P C Billings, and D J Herrick, and P S Howard, and U Kucich, and B N Engelsberg, and J Rosenbloom
Department of Anatomy and Histology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6002, USA. Billings@biochem.dental.upenn.edu

Bronchial smooth muscle cells play a central role in normal lung physiology by controlling airway tone. In addition, airway smooth muscle hyperplasia and hypertrophy are important factors in the pathophysiology of asthma. In this study, expression of betaig-h3, a recently identified component of the extracellular matrix (ECM), was investigated in primary human bronchial smooth muscle (HBSM) cells. Northern blot analysis demonstrated that treatment of cultured HBSM cells with transforming growth factor-beta1 resulted in a 4- to 5-fold increase in the steady-state level of betaig-h3 messenger RNA. Western blot analysis of secreted proteins using monospecific antibodies generated against peptide sequences found in the N- and C-terminal regions of the protein identified several isoforms having apparent mass of 70-74 kD. Immunohistochemical analysis of human lung localized betaig-h3 to the vascular and airway ECM, and particularly to the septal tips of alveolar ducts and alveoli, suggesting that it may have a morphogenetic role. Analysis of cultured HBSM cells identified betaig-h3 in both the ECM as well as the cytoplasm, and surprisingly also in the nucleus. These results demonstrate that betaig-h3 is produced by resident lung cells, is a component of lung ECM, and may play an important role in lung structure and function. The presence of this protein in nuclei suggests that it may have regulatory functions in addition to its role as a structural component of lung ECM.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

P C Billings, and D J Herrick, and P S Howard, and U Kucich, and B N Engelsberg, and J Rosenbloom
December 1991, Matrix (Stuttgart, Germany),
P C Billings, and D J Herrick, and P S Howard, and U Kucich, and B N Engelsberg, and J Rosenbloom
January 2021, Journal of equine veterinary science,
P C Billings, and D J Herrick, and P S Howard, and U Kucich, and B N Engelsberg, and J Rosenbloom
July 2003, Cell and tissue research,
P C Billings, and D J Herrick, and P S Howard, and U Kucich, and B N Engelsberg, and J Rosenbloom
December 1997, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
P C Billings, and D J Herrick, and P S Howard, and U Kucich, and B N Engelsberg, and J Rosenbloom
June 2003, Gene expression patterns : GEP,
P C Billings, and D J Herrick, and P S Howard, and U Kucich, and B N Engelsberg, and J Rosenbloom
February 2008, Genes & development,
P C Billings, and D J Herrick, and P S Howard, and U Kucich, and B N Engelsberg, and J Rosenbloom
October 2002, Biochimica et biophysica acta,
P C Billings, and D J Herrick, and P S Howard, and U Kucich, and B N Engelsberg, and J Rosenbloom
April 2006, Experimental & molecular medicine,
P C Billings, and D J Herrick, and P S Howard, and U Kucich, and B N Engelsberg, and J Rosenbloom
October 2009, Tissue engineering. Part A,
P C Billings, and D J Herrick, and P S Howard, and U Kucich, and B N Engelsberg, and J Rosenbloom
April 1991, Laboratory investigation; a journal of technical methods and pathology,
Copied contents to your clipboard!