Two epochs in the development of gamma-aminobutyric acidergic neurons in the ferret thalamus. 2003

Shawn G Hayes, and Karl D Murray, and Edward G Jones
Center for Neuroscience, University of California, Davis, Davis, California 95616, USA.

These studies chart the development of gamma-aminobutyric acid (GABA)-ergic neurons in the three divisions of the thalamus (ventral thalamus, dorsal thalamus, and epithalamus). GABAergic neurons were identified by in situ hybridization to localize mRNA for 67-kDa glutamic acid decarboxylase (GAD(67)) and related to the morphological maturation of the thalamus in fetal and postnatal brains and to expression of transcription factors Gbx-2 and Tbr-1. Origins of GABAergic neurons were sought in in vitro slice preparations incubated in bromodeoxyuridine or injected with a carbocyanine dye. GABA neurons of ventral thalamus (reticular nucleus, ventral lateral geniculate nucleus, zona incerta, and nucleus of the fields of Forel) and of epithalamus appear at least 14 days before those intrinsic to dorsal thalamus. Ventral thalamus GABA cells are derived from a region connecting the ventricular zone of the third ventricle to the caudal ganglionic eminence. This region is delimited ventrally by the Tbr-1-expressing prethalamic eminence and dorsally by the Gbx-2-expressing part of the dorsal thalamus. GABA neurons of epithalamus are derived from the embryonic pretectum. Neurons continue to be added to the ventral thalamus, perireticular nucleus, entopeduncular nucleus, and substantia nigra from the ganglionic eminence as development proceeds. GAD(67)-expressing cells of dorsal thalamus become detectable only at birth and populate the thalamus from posterior to anterior over the first week of life. Although a very small number reaches the dorsal lateral geniculate nucleus from the caudal ganglionic eminence, there is no obvious new source of proliferating neurons at this stage. Intrinsic GABA cells of dorsal thalamus may, therefore, derive from an early generated population of cells that turns on a GABAergic phenotype only late in development.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females
D005289 Ferrets Semidomesticated variety of European polecat much used for hunting RODENTS and/or RABBITS and as a laboratory animal. It is in the subfamily Mustelinae, family MUSTELIDAE. Domestic Polecat,Domestic Polecats,European Polecat,European Polecats,Ferret,Mustela putorius,Mustela putorius furo,Polecat, Domestic,Polecat, European,Polecats, Domestic,Polecats, European
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Shawn G Hayes, and Karl D Murray, and Edward G Jones
April 2006, The Journal of comparative neurology,
Shawn G Hayes, and Karl D Murray, and Edward G Jones
December 1997, The Journal of comparative neurology,
Shawn G Hayes, and Karl D Murray, and Edward G Jones
November 1997, Brain research,
Shawn G Hayes, and Karl D Murray, and Edward G Jones
December 2014, Biological psychiatry,
Shawn G Hayes, and Karl D Murray, and Edward G Jones
January 2002, The Journal of pharmacology and experimental therapeutics,
Shawn G Hayes, and Karl D Murray, and Edward G Jones
January 2004, The Journal of comparative neurology,
Shawn G Hayes, and Karl D Murray, and Edward G Jones
February 2007, The Journal of comparative neurology,
Shawn G Hayes, and Karl D Murray, and Edward G Jones
October 2001, The Journal of pharmacology and experimental therapeutics,
Shawn G Hayes, and Karl D Murray, and Edward G Jones
May 2017, Biological psychiatry,
Shawn G Hayes, and Karl D Murray, and Edward G Jones
January 1986, Endocrinology,
Copied contents to your clipboard!