Identification of two distinct populations of gamma-aminobutyric acidergic neurons in cultures of the rat cerebral cortex. 1997

A D de Lima, and T Voigt
Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany. delima@hermes.med.uni-magdeburg.de

Two types of neurons containing gamma-aminobutyric acid (GABA) were identified in cultures of embryonic rat neocortex. Large GABAergic neurons were already present 4 hours after plating, whereas small ones appeared later. Both types were shown to be neurons by double labeling with GABA and microtubule-associated protein 2 (MAP2) immunocytochemistry. The large GABAergic neurons represented less than 5% of the adherent cells, developed neurites rapidly, and progressed synchronously through the polarization and differentiation steps characteristic of the whole neuronal population. During the second week in culture, these GABA-immunoreactive cells developed into large, stellate neurons with fairly homogeneous morphology and poorly ramified, straight dendrites. At the same time, the GABAergic neuropil increased greatly, and neurites of GABAergic neurons showed advancing maturity and smoothness. The axon of each cell covered extensive areas of the culture, frequently encircling the somata of unlabeled neurons in a basket-like fashion. Significant numbers of small GABAergic cells developed only in the absence of the mitotic inhibition routinely used to control glial proliferation. These late-born GABAergic neurons went through neuritogenesis when most of the other neurons were already forming synapses on their somatodendritic surfaces. In mature cultures, they had a multipolar or fusiform morphology with spine-bearing dendrites. They had small somata and were often present inside clusters of neurons. Their short axons showed no obvious basket-like pattern of arborization. Thus, the two types of GABAergic neurons identified in cortical cultures differed in their morphology, distribution, and developmental history. We propose that intercellular interactions during early synaptogenesis may play a role in the development of different morphological types of GABAergic neurons in vitro.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016895 Culture Media, Serum-Free CULTURE MEDIA free of serum proteins but including the minimal essential substances required for cell growth. This type of medium avoids the presence of extraneous substances that may affect cell proliferation or unwanted activation of cells. Protein-Free Media,Serum-Free Media,Low-Serum Media,Culture Media, Serum Free,Low Serum Media,Media, Low-Serum,Media, Protein-Free,Media, Serum-Free,Media, Serum-Free Culture,Protein Free Media,Serum Free Media,Serum-Free Culture Media
D048429 Cell Size The quantity of volume or surface area of CELLS. Cell Volume,Cell Sizes,Cell Volumes,Size, Cell,Sizes, Cell,Volume, Cell,Volumes, Cell
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A D de Lima, and T Voigt
August 2003, The Journal of comparative neurology,
A D de Lima, and T Voigt
February 1986, Science (New York, N.Y.),
A D de Lima, and T Voigt
April 2006, The Journal of comparative neurology,
A D de Lima, and T Voigt
September 2004, Journal of neuroscience research,
A D de Lima, and T Voigt
October 2001, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!