Mapping of monoclonal antibody epitopes in the nucleolar protein fibrillarin (B-36) of Physarum polycephalum. 1992

M E Christensen, and N Banker
School of Biological Sciences, University of Missouri-Kansas City 64110.

We have mapped the epitopes for nine monoclonal antibodies raised against the nucleolar protein fibrillarin of the slime mold Physarum polycephalum. This has been done using a combination of specific chemical and enzymatic cleavage, Western blotting and partial sequencing of fragments. Cleavage with cyanogen bromide reveals four prominent methionine cleavage sites within the protein. Western blotting shows that none of the monoclonal antibody epitopes are dependent on long range interactions. Eight highly-conserved epitopes are clustered in the carboxy terminal half of the protein, while a single less-conserved epitope (for monoclonal antibody P1G12) is located at the amino terminus and appears to lie within the Gly/DMA/Phe domain.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D002868 Chromosomal Proteins, Non-Histone Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens. Non-Histone Chromosomal Proteins,Chromosomal Proteins, Non Histone,Chromosomal Proteins, Nonhistone,Non-Histone Chromosomal Phosphoproteins,Chromosomal Phosphoproteins, Non-Histone,Non Histone Chromosomal Phosphoproteins,Non Histone Chromosomal Proteins,Nonhistone Chromosomal Proteins,Proteins, Non-Histone Chromosomal
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic

Related Publications

M E Christensen, and N Banker
March 1978, Nucleic acids research,
M E Christensen, and N Banker
September 1986, Experimental cell research,
M E Christensen, and N Banker
November 1977, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
M E Christensen, and N Banker
October 1993, Experimental cell research,
M E Christensen, and N Banker
January 1997, The Journal of general virology,
M E Christensen, and N Banker
September 1979, Toxicology and applied pharmacology,
M E Christensen, and N Banker
March 1973, Archives of biochemistry and biophysics,
M E Christensen, and N Banker
June 1979, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!