Effects of specific chemical modification of actin. 1975

P D Chantler, and W B Gratzer

G-actin has been nitrated with tetranitromethane in conditions that lead to the modification of one tyrosine residue. The reactive residue was found by earlier workers to be Tyr-69. The nitrated actin is conformationally similar to native G-actin, as judged by sedimentation velocity and circular dichroism analysis. A small proportion only is in the form of covalently linked dimers and trimers. The nitrated G-actin will polymerise to form filaments, indistinguishable in the electron microscope from those of native F-actin, but the polymerisation process is slower. Reduction of the nitrophenol group to the corresponding aminophenol leaves the properties of the protein in respect of polymerisation unchanged. When a dansyl group is introduced at the same point, however, the ability of the actin to polymerise is lost. The nitrated actin and its reduced counterpart will also bind heavy meromyosin, and the characteristic arrowhead formation of the bound molecules along the filaments can be seen in the electron microscope. Neither of the modified F-actins, however, significantly activates or inhibits the myosin ATPase activity. The fluorescence of nitrated actin is strongly quenched through the presence of the nitrophenol chromophore. In soluble complexes with heavy meromyosin the fluorescence is indistinguishable from the sum of the separate contributions of the two protein components. There is thus no measurable excitation transfer between any tryptophan residues on the myosin heads, such as that inferred to be present in the ATPase site, and the nitrotyrosine in position 69 of the actin sequence. Implications of this observation are considered in relation to the different interaction sites in myosin and in actin. The activation of heavy meromyosin ATPase by copolymers containing actin and nitroactin in different proportions has been measured, and is not proportional to the fraction of native actin. The results are consistent with the view that the function of actomyosin depends on the interaction of the myosin heads with more than one actin subunit.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P D Chantler, and W B Gratzer
May 1961, The Journal of biological chemistry,
P D Chantler, and W B Gratzer
January 1970, Annual review of biochemistry,
P D Chantler, and W B Gratzer
January 1994, Methods in molecular biology (Clifton, N.J.),
P D Chantler, and W B Gratzer
February 1977, Cancer,
P D Chantler, and W B Gratzer
March 2000, Biophysical journal,
P D Chantler, and W B Gratzer
April 1976, Journal of the National Cancer Institute,
P D Chantler, and W B Gratzer
May 1988, Biochemical pharmacology,
P D Chantler, and W B Gratzer
June 1988, Molecular and cellular biochemistry,
P D Chantler, and W B Gratzer
January 1987, Methods in enzymology,
Copied contents to your clipboard!