Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. 2003

George R Beck, and Nicole Knecht
National Cancer Institute-Frederick, Center for Cancer Research, Basic Research Laboratory, Bldg. 576 Rm. 110, Frederick, MD 21702, USA. gbeck@ncifcrf.gov

The generation of inorganic phosphate by alkaline phosphatase during osteoblast differentiation represents an important signaling event, although the molecular and cellular consequences are currently undefined. We have previously described osteopontin as a gene regulated by an increase in inorganic phosphate not only in osteoblasts but also in other cell types. We describe here the identification of specific signaling pathways required for the stimulation of osteopontin expression by inorganic phosphate. We have determined that phosphate selectively activates the extracellular signal-regulated kinase (ERK1/2) signaling pathway but does not activate the other mitogen-activated protein kinase signaling proteins, p38, or the c-Jun N-terminal kinase. In addition, our results suggest that cellular exposure to 10 mm inorganic phosphate causes a biphasic ERK1/2 activation. The second ERK1/2 activation is required for osteopontin regulation, whereas the first is not sufficient. Analysis of common protein kinase families has revealed that phosphate-induced osteopontin expression specifically uses a protein kinase C-dependent signaling pathway. In addition, our results suggest that protein kinase C and ERK1/2 are not part of the same pathway but constitute two distinct pathways. Finally, we have determined that the proteasomal activity is required not only for phosphate-induced expression of osteopontin but also for the induction of osteopontin in response to 12-O-tetradecanoylphorbol 13-acetate and okadaic acid. The data presented here define for the first time the ability of increased inorganic phosphate to stimulate specific signaling pathways resulting in functionally significant changes in gene expression and identify three important signaling pathways in the regulation of osteopontin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012795 Sialoglycoproteins Glycoproteins which contain sialic acid as one of their carbohydrates. They are often found on or in the cell or tissue membranes and participate in a variety of biological activities. Polysialoglycoprotein,Sialoglycopeptide,Sialoglycopeptides,Sialoglycoprotein,Sialoprotein,Sialoproteins,Polysialoglycoproteins
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D016475 3T3 Cells Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION. 3T3 Cell,Cell, 3T3,Cells, 3T3

Related Publications

George R Beck, and Nicole Knecht
August 1991, Biochemistry international,
George R Beck, and Nicole Knecht
December 2017, Cancer biomarkers : section A of Disease markers,
George R Beck, and Nicole Knecht
September 1993, Science (New York, N.Y.),
George R Beck, and Nicole Knecht
September 2009, The Journal of biological chemistry,
George R Beck, and Nicole Knecht
March 1999, The Journal of biological chemistry,
Copied contents to your clipboard!