Prolonged spinal loading induces matrix metalloproteinase-2 activation in intervertebral discs. 2003

Adam H Hsieh, and Jeffrey C Lotz
Orthopaedic Bioengineering Laboratory, Department of Orthopaedic Surgery, University of California, San Francisco 94143-0514, USA.

METHODS An established in vivo mouse model of compression-induced disc degeneration was used to investigate the effects of load on matrix catabolism. OBJECTIVE To determine whether matrix metalloproteinase-2 expression in discs is modulated by mechanical load and to characterize the regulation of matrix metalloproteinase-2 activity. BACKGROUND We have previously shown that static compression of discs elicits changes in tissue architecture consistent with those seen with degeneration. Evidence in the literature demonstrates the existence of matrix metalloproteinases in both healthy and pathologic discs and suggests that mechanical load may influence matrix metalloproteinase expression and activity. METHODS Static compression was applied to mouse coccygeal discs in vivo for 1, 4, or 7 days, with adjacent discs serving as sham control. An activity assay was used to measure concentrations of active and total matrix metalloproteinase-2, and changes in matrix metalloproteinase-2 gene expression relative to beta-actin were assessed by reverse transcriptase-polymerase chain reaction. RESULTS Although no change was seen relative to sham after 1 day of load, the proportion of total matrix metalloproteinase-2 that was active increased after 4 days. This elevation was sustained through 7 days of compression, with no significant differences in total matrix metalloproteinase-2 concentrations among discs throughout the range of time points examined. Semiquantitative reverse transcriptase-polymerase chain reaction demonstrated no significant changes in matrix metalloproteinase-2 gene expression at 1 day or 4 days. CONCLUSIONS In this model, regulation of matrix metalloproteinase-2 activity occurs primarily through enhanced molecular activation of the proenzyme rather than through elevated gene expression or translation. Our results suggest that matrix metalloproteinase-2 may have a role in load-induced changes in disc architecture.

UI MeSH Term Description Entries
D007403 Intervertebral Disc Any of the 23 plates of fibrocartilage found between the bodies of adjacent VERTEBRAE. Disk, Intervertebral,Intervertebral Disk,Disc, Intervertebral,Discs, Intervertebral,Disks, Intervertebral,Intervertebral Discs,Intervertebral Disks
D008297 Male Males
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013131 Spine The spinal or vertebral column. Spinal Column,Vertebrae,Vertebral Column,Vertebra,Column, Spinal,Column, Vertebral,Columns, Spinal,Columns, Vertebral,Spinal Columns,Vertebral Columns
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D016474 Weight-Bearing The physical state of supporting an applied load. This often refers to the weight-bearing bones or joints that support the body's weight, especially those in the spine, hip, knee, and foot. Load-Bearing,Axial Loading,Loadbearing,Weightbearing,Axial Loadings,Load Bearing,Weight Bearing

Related Publications

Adam H Hsieh, and Jeffrey C Lotz
December 2017, Scientific reports,
Adam H Hsieh, and Jeffrey C Lotz
July 2003, Journal of vascular surgery,
Adam H Hsieh, and Jeffrey C Lotz
December 2000, Experimental cell research,
Adam H Hsieh, and Jeffrey C Lotz
January 1958, Zentralblatt fur Chirurgie,
Adam H Hsieh, and Jeffrey C Lotz
November 1995, Biochemical and biophysical research communications,
Copied contents to your clipboard!