The effect of succinylcholine on cat gastrocnemius muscle spindle afferents of different types. 1992

A Taylor, and J F Rodgers, and A J Fowle, and R Durbaba
Sherrington School of Physiology, UMDS, London.

1. A population of 269 gastrocnemius muscle spindle afferents have been studied in anaesthetized cats for the effects of succinylcholine (SCh) on their response to ramp and hold stretches repeated every 6 s. The effectiveness and reliability of the SCh test was improved by prior stimulation of the muscle at 10 Hz for 30 s to increase the blood flow. 2. Responses have been assessed from averaged cycle histograms before and after a single I.V. dose of SCh of 200 micrograms kg-1. As for previous studies of jaw muscle spindles the basic measurements were initial frequency (IF), peak frequency (PF) and static index (SI), the frequency 0.5 s after the end of the ramp of stretch. Dynamic difference (DD = PF-IF), dynamic index (DI = PF-SI) and static difference (SD = SI-IF) were derived from these and increases caused by SCh indicated by the prefix delta. 3. delta DD and delta IF were each distributed bimodally and since they were uncorrelated formed the basis for a four-way classification. Since delta DD can be attributed to activation of bag1 (b1) intrafusal fibres and delta IF to bag2 (b2) fibres, while all afferents receive input from chain (c) fibres it is proposed as with the jaw spindles that the classes correspond to predominant influence from b1c, b1b2c, b2c and c intrafusal fibres. 4. The proportion of units in the different groups were similar to those in the jaw muscles except for there being very few b1c type in gastrocnemius. 5. Conduction velocity was bimodally distributed with the best dividing line at 63.2 m s-1. The b1b2c units were all, save one, in the fast group, while the b2c units were equally divided between fast and slow. 6. Mean control values for DD did not differ between the b1b2c and the b2c groups, which is taken to indicate that the b1 fibre does not contribute significantly to the dynamic stretch response of spindles with no intrafusal contraction. 7. The results emphasize the importance of recognizing that some apparently primary afferents lack b1 fibre influence, while many secondaries have marked b2 fibre influence. 8. The importance of the SCh classification is discussed in relation to the identification of fusimotor effects on spindle discharge and in relation to studies of central connectivity.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005260 Female Females
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013390 Succinylcholine A quaternary skeletal muscle relaxant usually used in the form of its bromide, chloride, or iodide. It is a depolarizing relaxant, acting in about 30 seconds and with a duration of effect averaging three to five minutes. Succinylcholine is used in surgical, anesthetic, and other procedures in which a brief period of muscle relaxation is called for. Succinyldicholine,Suxamethonium,Anectine,Celocurine,Dicholine Succinate,Ditilin,Listenon,Lysthenon,Myorelaxin,Quelicin,Succicuran,Succinylcholine Chloride,Succinylcholine Dibromide,Succinylcholine Dichloride,Succinylcholine Dichloride, Di-H2O,Succinylcholine Diiodide,Succinylcholine Diperchlorate,Succinylcholine Iodide,Suxamethonium Bromide,Suxamethonium Chloride,Bromide, Suxamethonium,Dibromide, Succinylcholine,Dichloride, Succinylcholine,Diiodide, Succinylcholine,Diperchlorate, Succinylcholine,Succinate, Dicholine,Succinylcholine Dichloride, Di H2O

Related Publications

A Taylor, and J F Rodgers, and A J Fowle, and R Durbaba
February 1984, Pflugers Archiv : European journal of physiology,
A Taylor, and J F Rodgers, and A J Fowle, and R Durbaba
June 1970, Anesthesiology,
A Taylor, and J F Rodgers, and A J Fowle, and R Durbaba
April 1972, The Journal of physiology,
A Taylor, and J F Rodgers, and A J Fowle, and R Durbaba
December 1970, Experimental neurology,
A Taylor, and J F Rodgers, and A J Fowle, and R Durbaba
April 1963, Acta physiologica et pharmacologica Neerlandica,
A Taylor, and J F Rodgers, and A J Fowle, and R Durbaba
June 1977, Brain research,
A Taylor, and J F Rodgers, and A J Fowle, and R Durbaba
February 1990, Brain research,
A Taylor, and J F Rodgers, and A J Fowle, and R Durbaba
March 2006, The Journal of physiology,
Copied contents to your clipboard!