The activity of spindle afferents originating from both primary and secondary endings of the isometrically extended (6-8 mm) gastrocnemius-soleus (GS) muscle was recorded in precollicular decerebrate cats during sinusoidal head rotation about the longitudinal axis above a stationary body. In the first group of experiments to test the influence of vestibular volleys on fusimotor neurons, an acute bilateral neck deafferentation at C1-C3 was performed to eliminate possible influences arising from neck receptors; head rotation (0.026 Hz, +/- 15 degrees) induced a weak periodic rate modulation in 6/38 (15.8%) of the tested spindle afferents; the average response gain was 0.18 +/- 0.12, SD imp./s/deg (mean firing rate, 18.9 +/- 2.8 imp./s), and the average phase angle was -43.2 +/- 47.0 degrees, SD lag with respect to ipsilateral side-down displacement of the head (alpha-response pattern). In a second group of experiments head rotation studied after acute bilateral section of VIII cranial nerve, thereby stimulating only neck receptors, failed to influence in a reliable manner the firing rate of 38 additional spindle afferents. In a third group of experiments in which both VIII nerves and cervical dorsal roots were left intact, head rotation induced a response in 7/45 (15.6%) of the tested spindle afferents similar to that observed after cervical deafferentiation and thus depended on stimulation of labyrinth receptors alone. Over the examined frequency range of head rotation from 0.015 to 0.325 Hz (+/- 15 degrees), the response gain of spindle afferents was relatively stable during sinusoidal labyrinth stimulation. For most of the spindle afferents the phase angle of the response elicited at the lower frequencies was related to the direction of head orientation towards the ipsilateral sidedown, thus being attributed to labyrinth volleys originating from macular receptors; at 0325 Hz the stimulus was less effective and some units showed a phase advance relative to head position which was attributed to costimulation of canal receptors. Displacement of the muscle under study obtained by either rotation of the whole animal or body alone beneath a stationary head elicited a periodic modulation of spindle afferent discharge, independent of head orientation or type of preparation, in 51/73 (70%) of the muscle spindles tested; the average response gain was 0.20 +/- 0.19, SD imp./s/deg, and an average phase lead of +14.1 +/- 20.5 degrees, SD with respect to the peak of the ipsilateral side-down displacement of the body or of the animal was observed.(ABSTRACT TRUNCATED AT 400 WORDS)