Effects of low and moderate exercise intensity on postprandial lipemia and postheparin plasma lipoprotein lipase activity in physically active men. 2004

Christos S Katsanos, and Peter W Grandjean, and Robert J Moffatt
Metabolism Unit, Shriners Burns Hospital, 815 Market St., Galveston, TX 77550, USA. cskatsan@utmb.edu

This study was designed to assess differences in the intensity of exercise to attenuate postprandial lipemia (PPL). Thirteen healthy men (age 23.8 +/- 0.9 yr) participated in three random-ordered trials: in low-(25% peak oxygen consumption; Low) and moderate-intensity (65% peak oxygen consumption; Mod) exercise trials, which were completed 1 h before a high-fat meal (1.3 g fat/kg body mass), and a control (Con), fat meal only, trial. Venous blood samples were obtained before the fat meal, and at 2, 4, 6, 8, and 20 h after the fat meal. PPL in the Mod trial (267 +/- 50 mg.dl-1.8 h) was lower compared with that in either Con (439 +/- 81 mg.dl-1.8 h) or Low (403 +/- 91 mg.dl-1.8 h) trials (P < 0.05), whereas there was no difference in PPL between Con and Low trials (P > 0.05). High-density lipoprotein cholesterol (HDL-C) and HDL subtype 2 cholesterol were not different between or within trials (P > 0.05). Postprandial insulinemia was lower in the Mod trial (20.5 +/- 5.7 microIU.ml-1.8 h; P < 0.05), but not in the Low trial (31.4 +/- 4.7 microIU.ml-1.8 h), compared with that in the Con trial (34.9 +/- 5.0 microIU.ml-1.8 h). Postheparin lipoprotein lipase activity at 8 h was higher in the Low trial compared with that in either Con or Mod trials, whereas there were no differences between trials at 20 h. These results suggest that, when exercise is performed 1 h before a fat meal, only exercise of moderate but not of low intensity attenuates PPL and that this effect is not associated with changes in postheparin lipoprotein lipase activity.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008076 Cholesterol, HDL Cholesterol which is contained in or bound to high-density lipoproteins (HDL), including CHOLESTEROL ESTERS and free cholesterol. High Density Lipoprotein Cholesterol,Cholesterol, HDL2,Cholesterol, HDL3,HDL Cholesterol,HDL(2) Cholesterol,HDL(3) Cholesterol,HDL2 Cholesterol,HDL3 Cholesterol,alpha-Lipoprotein Cholesterol,Cholesterol, alpha-Lipoprotein,alpha Lipoprotein Cholesterol
D008297 Male Males
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010809 Physical Fitness The ability to carry out daily tasks and perform physical activities in a highly functional state, often as a result of physical conditioning. Fitness, Physical
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

Christos S Katsanos, and Peter W Grandjean, and Robert J Moffatt
July 2001, Metabolism: clinical and experimental,
Christos S Katsanos, and Peter W Grandjean, and Robert J Moffatt
March 1995, Arteriosclerosis, thrombosis, and vascular biology,
Christos S Katsanos, and Peter W Grandjean, and Robert J Moffatt
October 2014, Medicine and science in sports and exercise,
Christos S Katsanos, and Peter W Grandjean, and Robert J Moffatt
January 1985, The Tohoku journal of experimental medicine,
Christos S Katsanos, and Peter W Grandjean, and Robert J Moffatt
October 1975, Pediatria polska,
Christos S Katsanos, and Peter W Grandjean, and Robert J Moffatt
March 2016, Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme,
Christos S Katsanos, and Peter W Grandjean, and Robert J Moffatt
January 2024, Journal of exercise science and fitness,
Christos S Katsanos, and Peter W Grandjean, and Robert J Moffatt
January 1979, Voprosy meditsinskoi khimii,
Christos S Katsanos, and Peter W Grandjean, and Robert J Moffatt
January 1963, Acta Universitatis Carolinae. Medica,
Christos S Katsanos, and Peter W Grandjean, and Robert J Moffatt
July 2006, Arquivos brasileiros de cardiologia,
Copied contents to your clipboard!