DNA repair pathways in mammalian cells analyzed by isolation of ACNU-sensitive Chinese hamster ovary cells. 1992

M Numata, and H Hata, and H Tohda, and A Yasui, and A Oikawa
Department of Pharmacology, Tohoku University, Sendai, Japan.

1-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3- nitrosourea hydrochloride (ACNU) causes chloroethylation of DNA strand followed by cross linking through an ethylene bridge. We recently isolated two ACNU sensitive mutants from mutagenized Chinese hamster ovary cells, and found them to be new drug sensitive recessive mutants (Hata et al. 1991). The O6-methyl guanine DNA methyl transferase (MT) activities of these cells were undetectable as the parental cell line, indicating that the sensitivity of the mutant cell lines to ACNU was not due to the decreased cellular level of this enzyme. By complementation analysis with the 7 established UV-sensitive CHO cell lines, one of the mutants, UVS1, turned out to complement their UV-sensitivity and, therefore, build a new complementation group among all the CHO cell lines ever reported. The other mutant, CNU1 showed hypersensitivity only to chlorethylating agents (ACNU, CCNU) and exhibited a slightly reduced unscheduled DNA synthesis (UDS) induced by UV. It is, therefore, suggestive that this mutant is defective in a specific step of DNA repair systems, which is important for the processing of DNA damages produced by ACNU. Only cell lines from the complementation group 1 and 4 out of 7 established complementation groups of UV-sensitive CHO mutants were more sensitive to ACNU than UVS1 and CNU1, indicating some steps of excision repair pathways as well as specific repair system play important roles in repairing ACNU-induced DNA damages.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D015376 Nimustine Antineoplastic agent especially effective against malignant brain tumors. The resistance which brain tumor cells acquire to the initial effectiveness of this drug can be partially overcome by the simultaneous use of membrane-modifying agents such as reserpine, calcium antagonists such as nicardipine or verapamil, or the calmodulin inhibitor, trifluoperazine. The drug has also been used in combination with other antineoplastic agents or with radiotherapy for the treatment of various neoplasms. ACNU,NSC 245382
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO

Related Publications

M Numata, and H Hata, and H Tohda, and A Yasui, and A Oikawa
June 1981, Proceedings of the National Academy of Sciences of the United States of America,
M Numata, and H Hata, and H Tohda, and A Yasui, and A Oikawa
March 1987, Cancer research,
M Numata, and H Hata, and H Tohda, and A Yasui, and A Oikawa
September 1987, Biochemistry and cell biology = Biochimie et biologie cellulaire,
M Numata, and H Hata, and H Tohda, and A Yasui, and A Oikawa
December 1996, Mutation research,
M Numata, and H Hata, and H Tohda, and A Yasui, and A Oikawa
March 1991, Mutation research,
M Numata, and H Hata, and H Tohda, and A Yasui, and A Oikawa
October 1973, Nature: New biology,
M Numata, and H Hata, and H Tohda, and A Yasui, and A Oikawa
April 1987, Carcinogenesis,
M Numata, and H Hata, and H Tohda, and A Yasui, and A Oikawa
June 1975, Molecular & general genetics : MGG,
M Numata, and H Hata, and H Tohda, and A Yasui, and A Oikawa
January 1987, Journal of cell science. Supplement,
M Numata, and H Hata, and H Tohda, and A Yasui, and A Oikawa
August 1986, Molecular and cellular biology,
Copied contents to your clipboard!