Gene-specific nuclear and mitochondrial repair of formamidopyrimidine DNA glycosylase-sensitive sites in Chinese hamster ovary cells. 1996

B G Taffe, and F Larminat, and J Laval, and D L Croteau, and R M Anson, and V A Bohr
Wayne State University, Detroit, MI, USA.

This study examines the capacity of a mammalian cell to repair, at the gene level, DNA base lesions generated by photoactivation of acridine orange. Chinese hamster ovary fibroblasts were exposed to acridine orange and visible light, and gene-specific DNA repair was measured in the dihydrofolate reductase (DHFR) gene and in the mitochondrial genome. DNA lesions were recognized by Escherichia coli formamidepyrimidine-DNA glycosylase (FPG) which removes predominantly 8-oxodG and the corresponding formamidopyrimidine ring opened bases, and subsequently cleaves the DNA at the resulting apurinic site. FPG-recognized DNA lesions increased linearly with increasing photo-activation of AO, while cell survival was not affected by light alone and was negligibly affected by preincubation with AO in the dark. The frequency of induction of FPG-sensitive DNA damage by photoactivation of AO was similar in the transcribed and non-transcribed nuclear DNA as well as in the mitochondrial DNA. FPG-sensitive sites in the DHFR gene were repaired quickly, with 84% of adducts repaired within 4 h. The lesion frequency, kinetics and percent of repair of non-transcribed genomic DNA did not differ significantly from repair in the active DHFR gene up to 1 h postexposure. At late time points, transcribed DNA was repaired faster than the non-transcribed DNA. Mitochondrial DNA was efficiently repaired, at a rate similar to that in the active nuclear DNA.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

B G Taffe, and F Larminat, and J Laval, and D L Croteau, and R M Anson, and V A Bohr
June 1981, Proceedings of the National Academy of Sciences of the United States of America,
B G Taffe, and F Larminat, and J Laval, and D L Croteau, and R M Anson, and V A Bohr
November 1992, Carcinogenesis,
B G Taffe, and F Larminat, and J Laval, and D L Croteau, and R M Anson, and V A Bohr
August 1986, Molecular and cellular biology,
B G Taffe, and F Larminat, and J Laval, and D L Croteau, and R M Anson, and V A Bohr
October 1992, The Tohoku journal of experimental medicine,
B G Taffe, and F Larminat, and J Laval, and D L Croteau, and R M Anson, and V A Bohr
September 1987, Biochemistry and cell biology = Biochimie et biologie cellulaire,
B G Taffe, and F Larminat, and J Laval, and D L Croteau, and R M Anson, and V A Bohr
May 1995, Mutation research,
B G Taffe, and F Larminat, and J Laval, and D L Croteau, and R M Anson, and V A Bohr
May 1976, Biochimica et biophysica acta,
B G Taffe, and F Larminat, and J Laval, and D L Croteau, and R M Anson, and V A Bohr
April 2000, The Journal of biological chemistry,
B G Taffe, and F Larminat, and J Laval, and D L Croteau, and R M Anson, and V A Bohr
August 1992, Mutation research,
Copied contents to your clipboard!