Electron spin echo envelope modulation spectroscopic study of iron-nitrogen interactions in myoglobin hydroxide and Fe(III) tetraphenylporphyrin models. 1992

R S Magliozzo, and J Peisach
Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461.

The electron-nuclear coupling in low-spin iron complexes including myoglobin hydroxide (MbOH) and two related model compounds, Fe(III) tetraphenylporphyrin(pyridine)(OR-) (R = H or CH3) and Fe(III) tetraphenylporphyrin(butylamine)(OR-) was investigated using electron spin echo envelope modulation (ESEEM) spectroscopy. The assignment of frequency components in ESEEM spectra was accomplished through the use of nitrogen isotopic substitution wherever necessary. For example, the proximal imidazole coupling in MbOH was investigated without interference from the contributions of porphyrin 14N nuclei after substitution of the heme in native Mb with 15N-labeled heme. Computer simulation of spectra using angle selected techniques enabled the assignment of parameters describing the hyperfine and quadrupole interactions for axially bound nitrogen of imidazole in MbOH, of axial pyridine and butylamine in the models, and for the porphyrin nitrogens of the heme in native MbOH. The isotropic component of axial nitrogen hyperfine interactions exhibits a trend from 5 to 4 MHz, with imidazole (MbOH) greater than pyridine greater than amine. The nuclear quadrupole interaction coupling constant e2Qq was near 2 MHz for all nitrogens in these complexes. The Qzz axis of the nuclear quadrupole interaction tensor for the proximal imidazole nitrogen in MbOH was found to be aligned near gz (gmax) in MbOH, suggesting that gz is near the heme normal. A crystal field analysis, that allows a calculation of rhombic and axial splittings for the d orbitals of the t2g set in a low-spin heme complex, based on the g tensor assignment gz greater than gy greater than gx, yielded results that are consistent with the poor pi-acceptor properties expected for the closed shell oxygen atom of the hydroxide ligand in MbOH. A discussion is presented of the unusual results reported in a linear electric field effect in EPR (LEFE) study of MbOH published previously [Mims, W. B., & Peisach, J. (1976) J. Chem. Phys. 64, 1074-1091].

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008665 Metalloporphyrins Porphyrins which are combined with a metal ion. The metal is bound equally to all four nitrogen atoms of the pyrrole rings. They possess characteristic absorption spectra which can be utilized for identification or quantitative estimation of porphyrins and porphyrin-bound compounds. Metalloporphyrin
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009211 Myoglobin A conjugated protein which is the oxygen-transporting pigment of muscle. It is made up of one globin polypeptide chain and one heme group.
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D002082 Butylamines Isomeric amines of butane, where an amino group replaces a hydrogen on one of the four carbons. They include isobutylamine, n-Butylamine, sec-Butylamine, and tert-Butylamine.
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric

Related Publications

R S Magliozzo, and J Peisach
September 1998, Journal of magnetic resonance (San Diego, Calif. : 1997),
R S Magliozzo, and J Peisach
October 2001, Biochimica et biophysica acta,
R S Magliozzo, and J Peisach
May 2005, The Journal of chemical physics,
R S Magliozzo, and J Peisach
January 1993, Methods in enzymology,
R S Magliozzo, and J Peisach
January 2022, Applied magnetic resonance,
R S Magliozzo, and J Peisach
October 2004, Journal of magnetic resonance (San Diego, Calif. : 1997),
Copied contents to your clipboard!