High-frequency/high-field (95 GHz/3.4 T) electron spin echo envelope modulation (ESEEM) experiments on single crystals and disordered samples of dianisyl-nitroxide (DANO) radicals are reported. At these high microwave frequencies (W-band), the anisotropic g-matrix of the nitroxide radical is resolved in the EPR spectrum. Additionally ESEEM modulations from other than nitrogen nuclei, such as protons, are highly suppressed at these frequencies, because they are too far from the cancellation condition for effective mixing of the nuclear spin functions. Therefore the nitrogen (14N) hyperfine and quadrupole coupling tensors could be determined without ambiguity from powder measurements. The results obtained were checked by ESEEM measurements on single crystals. Advantages and disadvantages of high-field ESEEM on nitrogen couplings are briefly discussed and compared with electron nuclear double resonance (ENDOR) and X-band ESEEM. Copyright 1998 Academic Press.
| UI | MeSH Term | Description | Entries |
|---|