The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. 1992

B L Kieffer, and K Befort, and C Gaveriaux-Ruff, and C G Hirth
Ecole Supérieure de Biotechnologie, Strasbourg, France.

A random primed expression cDNA library was constructed from the RNA of NG 108-15 cells. Pools of plasmid DNA were transfected into COS cells, which were screened for their ability to bind 3H-labeled Tyr-D-Thr-Gly-Phe-Leu-Thr, a tritiated agonist for the delta-opioid receptor. A cDNA was isolated that encodes a 371-amino acid-residue protein presenting all the structural characteristics of receptors that interact with guanine nucleotide-binding proteins. Noticeable features are (i) the high hydrophobicity of the encoded protein, (ii) its low sequence similarity to both catecholamine receptors and peptide-binding receptors, although it presents the typical aspartate residue involved in catecholamine binding of the first group and the characteristic short third cytoplasmic loop of the second group. When expressed in COS cells, the receptor exhibits pharmacological properties similar to those of the native receptor: high-affinity binding sites for 3H-labeled Tyr-D-Thr-Gly-Phe-Leu-Thr (Kd = 1.4 nM), stereospecific binding sites for the - enantiomers of levorphanol and naloxone, and the selectivity profile of a delta receptor, as determined by competition experiments with a set of mu-, delta-, and kappa-opioid ligands.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations

Related Publications

B L Kieffer, and K Befort, and C Gaveriaux-Ruff, and C G Hirth
December 1992, Science (New York, N.Y.),
B L Kieffer, and K Befort, and C Gaveriaux-Ruff, and C G Hirth
April 1996, Journal of neuroimmunology,
B L Kieffer, and K Befort, and C Gaveriaux-Ruff, and C G Hirth
January 1995, Masui. The Japanese journal of anesthesiology,
B L Kieffer, and K Befort, and C Gaveriaux-Ruff, and C G Hirth
November 1999, Brain research. Molecular brain research,
B L Kieffer, and K Befort, and C Gaveriaux-Ruff, and C G Hirth
November 1998, Biochemical Society transactions,
B L Kieffer, and K Befort, and C Gaveriaux-Ruff, and C G Hirth
November 1993, Proceedings of the National Academy of Sciences of the United States of America,
B L Kieffer, and K Befort, and C Gaveriaux-Ruff, and C G Hirth
November 1993, Neuron,
B L Kieffer, and K Befort, and C Gaveriaux-Ruff, and C G Hirth
January 1994, Life sciences,
B L Kieffer, and K Befort, and C Gaveriaux-Ruff, and C G Hirth
August 1993, FEBS letters,
B L Kieffer, and K Befort, and C Gaveriaux-Ruff, and C G Hirth
September 1993, FEBS letters,
Copied contents to your clipboard!