Inhibition of ingestive behavior following fourth ventricle bombesin injection in chronic decerebrate rats. 1992

F W Flynn, and L Robillard
Department of Psychology, University of Wyoming, Laramie 82071.

To test the hypothesis that the effects of 4th ventricle bombesin (BN) injection on feeding require interaction with forebrain neural systems, intraoral sucrose (0.1 M) was measured in tube-fed control and tube-fed supracollicular decerebrate rats after 4th ventricle injections of 1, 5, 10, 20, and 50 ng BN. Fourth ventricle injections of all doses of BN reliably suppressed sucrose intake in both control and chronic decerebrate rats. These results indicate that caudal brain stem afferent signals produced by 4th ventricle BN injections are integrated by the local neural circuitry of the caudal brain stem, independent of the forebrain systems, to modulate ingestive behavior.

UI MeSH Term Description Entries
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D001839 Bombesin A tetradecapeptide originally obtained from the skins of toads Bombina bombina and B. variegata. It is also an endogenous neurotransmitter in many animals including mammals. Bombesin affects vascular and other smooth muscle, gastric secretion, and renal circulation and function. Bombesin 14,Bombesin Dihydrochloride,Dihydrochloride, Bombesin
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004326 Drinking The consumption of liquids. Water Consumption,Water Intake,Drinkings
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes

Related Publications

F W Flynn, and L Robillard
March 1989, The American journal of physiology,
F W Flynn, and L Robillard
September 1994, Neuroreport,
F W Flynn, and L Robillard
January 1981, The American journal of physiology,
F W Flynn, and L Robillard
July 1964, Journal of neurophysiology,
F W Flynn, and L Robillard
October 1994, Annals of the New York Academy of Sciences,
F W Flynn, and L Robillard
January 1993, The American journal of physiology,
F W Flynn, and L Robillard
May 1983, Physiology & behavior,
F W Flynn, and L Robillard
June 1998, Behavioral neuroscience,
Copied contents to your clipboard!