Electrophysiological effects of diprafenone, a dimethyl congener of propafenone on guinea-pig ventricular cells. 1992

I Kodama, and R Suzuki, and H Honjo, and J Toyama
Department of Circulation, Nagoya University, Japan.

1. The effects of diprafenone and propafenone on transmembrane action potential were examined and compared in papillary muscles and single ventricular myocytes isolated from guinea-pig hearts. 2. In papillary muscles, both diprafenone and propafenone > or = 10(-6) M caused a significant and dose-dependent decrease in the maximum upstroke velocity (Vmax) of the action potential. 3. In the presence of either drug, trains of stimuli at rates > or = 0.1 Hz led to an exponential decline in Vmax. A time constant (tau R) for Vmax recovery from the use-dependent block was 15.5 s for diprafenone and 8.8 s for propafenone. 4. The use-dependent block of Vmax with diprafenone was enhanced when the resting potential was depolarized by high (8, 10 mM) [K+]o, whereas that with propafenone was virtually unchanged. tau R with diprafenone was shortened by the depolarization, while that with propafenone was rather prolonged. 5. In single myocytes perfused with diprafenone or propafenone, 10 ms conditioning clamp to 0 mV caused a significant decrease in Vmax of subsequent action potential. A prolongation of the clamp pulse duration resulted in a modest enhancement of the Vmax inhibition with diprafenone, while a large enhancement of the Vmax inhibition occurred with propafenone. 6. These findings suggest that diprafenone, like propafenone, may block the sodium channel during both the activated and inactivated states. The relative contribution of inactivation block is less important for diprafenone than for propafenone. The different voltage-dependence of use-dependent block with diprafenone from propafenone would contribute to its high antiarrhythmic potency.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011405 Propafenone An antiarrhythmia agent that is particularly effective in ventricular arrhythmias. It also has weak beta-blocking activity. Apo-Propafenone,Arythmol,Baxarytmon,Cuxafenon,Fenoprain,Jutanorm,Nistaken,Norfenon,Pintoform,Prolecofen,Propafenon AL,Propafenon Hexal,Propafenon Minden,Propafenone Hydrochloride,Propafenone Hydrochloride, (R)-Isomer,Propafenone Hydrochloride, (S)-Isomer,Propafenone, (+-)-Isomer,Propafenone, (R)-Isomer,Propafenone, (S)-Isomer,Propamerck,Rythmol,Rytmo-Puren,Rytmogenat,Rytmonorm,SA-79,Hydrochloride, Propafenone,SA 79,SA79
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

I Kodama, and R Suzuki, and H Honjo, and J Toyama
October 1989, Journal of cardiovascular pharmacology,
I Kodama, and R Suzuki, and H Honjo, and J Toyama
March 1991, British journal of pharmacology,
I Kodama, and R Suzuki, and H Honjo, and J Toyama
December 1985, European journal of pharmacology,
I Kodama, and R Suzuki, and H Honjo, and J Toyama
December 1985, British journal of pharmacology,
I Kodama, and R Suzuki, and H Honjo, and J Toyama
March 1993, British journal of pharmacology,
I Kodama, and R Suzuki, and H Honjo, and J Toyama
January 1992, Basic research in cardiology,
I Kodama, and R Suzuki, and H Honjo, and J Toyama
May 1993, British journal of pharmacology,
I Kodama, and R Suzuki, and H Honjo, and J Toyama
December 1985, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
I Kodama, and R Suzuki, and H Honjo, and J Toyama
October 2005, Sheng li xue bao : [Acta physiologica Sinica],
I Kodama, and R Suzuki, and H Honjo, and J Toyama
November 1987, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!