Electrophysiological effects of propafenone in untreated and propafenone-pretreated guinea-pig atrial and ventricular muscle fibres. 1985

C Delgado, and J Tamargo, and T Tejerina

The electrophysiological effects of propafenone (10(-7) to 10(-4) M) were studied on guinea-pig isolated atrial and ventricular muscle fibres obtained from untreated animals and animals pretreated with propafenone, 3 and 10 mg kg-1, for 28 days. In untreated atria propafenone produced a dose-dependent decrease in the rate and maximum following frequency, prolonged the sinus node recovery time and reduced the maximum chronotropic responses to isoprenaline. In untreated atrial and ventricular muscle fibres propafenone depressed action potential amplitude and Vmax, reduced the resting membrane potential and prolonged the action potential duration (APD) and the effective refractory period, lengthening the effective refractory period relative to APD. Propafenone depressed the amplitude and Vmax and shortened the duration of the slow action potentials induced by isoprenaline and caffeine in K-depolarized papillary muscles. Pretreatment with propafenone reduced atrial rate, but did not modify the action potential characteristics compared to the values obtained in untreated atria. Further addition of propafenone produced similar but more marked changes in untreated atria. In ventricular muscle fibres pretreated with 3 mg kg-1, action potential characteristics before and after further addition of propafenone were similar to those obtained in untreated fibres. However, muscles pretreated with 10 mg kg-1 exhibited a significant prolongation of the APD compared to that in untreated muscles or those pretreated with 3 mg kg-1; further addition of propafenone shortened the APD even when this parameter was of similar value to those observed in the other two series of experiments. It is concluded that even though the effects of propafenone are similar to those of quinidine (class I antiarrhythmic), it also exhibited class II and class IV actions. In pretreated animals a prolongation of the APD (class III action) could also be involved in the antiarrhythmic effects of the drug.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D011405 Propafenone An antiarrhythmia agent that is particularly effective in ventricular arrhythmias. It also has weak beta-blocking activity. Apo-Propafenone,Arythmol,Baxarytmon,Cuxafenon,Fenoprain,Jutanorm,Nistaken,Norfenon,Pintoform,Prolecofen,Propafenon AL,Propafenon Hexal,Propafenon Minden,Propafenone Hydrochloride,Propafenone Hydrochloride, (R)-Isomer,Propafenone Hydrochloride, (S)-Isomer,Propafenone, (+-)-Isomer,Propafenone, (R)-Isomer,Propafenone, (S)-Isomer,Propamerck,Rythmol,Rytmo-Puren,Rytmogenat,Rytmonorm,SA-79,Hydrochloride, Propafenone,SA 79,SA79
D011427 Propiophenones Propiophenone (ethyl phenyl ketone, structural formula C6H5COCH2CH3) and its derivatives. They are commonly used in perfumes and pharmaceuticals.
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

C Delgado, and J Tamargo, and T Tejerina
March 1979, Experientia,
C Delgado, and J Tamargo, and T Tejerina
June 1991, European journal of pharmacology,
C Delgado, and J Tamargo, and T Tejerina
November 1992, British journal of pharmacology,
C Delgado, and J Tamargo, and T Tejerina
June 1991, British journal of pharmacology,
C Delgado, and J Tamargo, and T Tejerina
April 1995, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
C Delgado, and J Tamargo, and T Tejerina
January 1992, Basic research in cardiology,
C Delgado, and J Tamargo, and T Tejerina
December 1985, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
C Delgado, and J Tamargo, and T Tejerina
October 1989, Proceedings of the National Science Council, Republic of China. Part B, Life sciences,
C Delgado, and J Tamargo, and T Tejerina
November 1987, British journal of pharmacology,
Copied contents to your clipboard!